SDRPlusPlus/core/src/utils/networking.cpp

504 lines
14 KiB
C++
Raw Normal View History

#include <utils/networking.h>
#include <assert.h>
2022-01-21 20:22:13 +01:00
#include <spdlog/spdlog.h>
namespace net {
#ifdef _WIN32
extern bool winsock_init = false;
#endif
ConnClass::ConnClass(Socket sock, struct sockaddr_in raddr, bool udp) {
_sock = sock;
_udp = udp;
remoteAddr = raddr;
connectionOpen = true;
readWorkerThread = std::thread(&ConnClass::readWorker, this);
writeWorkerThread = std::thread(&ConnClass::writeWorker, this);
}
ConnClass::~ConnClass() {
ConnClass::close();
}
void ConnClass::close() {
std::lock_guard lck(closeMtx);
// Set stopWorkers to true
{
std::lock_guard lck1(readQueueMtx);
std::lock_guard lck2(writeQueueMtx);
stopWorkers = true;
}
// Notify the workers of the change
readQueueCnd.notify_all();
writeQueueCnd.notify_all();
if (connectionOpen) {
#ifdef _WIN32
closesocket(_sock);
#else
2021-07-19 15:57:37 +02:00
::shutdown(_sock, SHUT_RDWR);
::close(_sock);
#endif
}
// Wait for the theads to terminate
if (readWorkerThread.joinable()) { readWorkerThread.join(); }
if (writeWorkerThread.joinable()) { writeWorkerThread.join(); }
{
std::lock_guard lck(connectionOpenMtx);
connectionOpen = false;
}
connectionOpenCnd.notify_all();
}
bool ConnClass::isOpen() {
return connectionOpen;
}
void ConnClass::waitForEnd() {
std::unique_lock lck(readQueueMtx);
connectionOpenCnd.wait(lck, [this]() { return !connectionOpen; });
}
int ConnClass::read(int count, uint8_t* buf) {
2021-07-16 18:13:18 +02:00
if (!connectionOpen) { return -1; }
std::lock_guard lck(readMtx);
int ret;
if (_udp) {
2021-07-30 22:06:06 +02:00
socklen_t fromLen = sizeof(remoteAddr);
ret = recvfrom(_sock, (char*)buf, count, 0, (struct sockaddr*)&remoteAddr, &fromLen);
2022-01-21 20:22:13 +01:00
if (ret <= 0) {
{
std::lock_guard lck(connectionOpenMtx);
connectionOpen = false;
}
connectionOpenCnd.notify_all();
return -1;
}
return count;
}
2022-01-21 20:22:13 +01:00
int beenRead = 0;
while (beenRead < count) {
ret = recv(_sock, (char*)&buf[beenRead], count - beenRead, 0);
if (ret <= 0) {
{
std::lock_guard lck(connectionOpenMtx);
connectionOpen = false;
}
connectionOpenCnd.notify_all();
return -1;
}
2022-01-21 20:22:13 +01:00
beenRead += ret;
}
2022-01-21 20:22:13 +01:00
return beenRead;
}
bool ConnClass::write(int count, uint8_t* buf) {
2021-07-16 18:13:18 +02:00
if (!connectionOpen) { return false; }
std::lock_guard lck(writeMtx);
int ret;
if (_udp) {
ret = sendto(_sock, (char*)buf, count, 0, (struct sockaddr*)&remoteAddr, sizeof(remoteAddr));
2022-01-21 20:22:13 +01:00
if (ret <= 0) {
{
std::lock_guard lck(connectionOpenMtx);
connectionOpen = false;
}
connectionOpenCnd.notify_all();
}
return (ret > 0);
}
2022-01-21 20:22:13 +01:00
int beenWritten = 0;
while (beenWritten < count) {
ret = send(_sock, (char*)buf, count, 0);
if (ret <= 0) {
{
std::lock_guard lck(connectionOpenMtx);
connectionOpen = false;
}
connectionOpenCnd.notify_all();
return false;
}
2022-01-21 20:22:13 +01:00
beenWritten += ret;
}
2022-01-21 20:22:13 +01:00
return true;
}
void ConnClass::readAsync(int count, uint8_t* buf, void (*handler)(int count, uint8_t* buf, void* ctx), void* ctx) {
2021-07-16 18:13:18 +02:00
if (!connectionOpen) { return; }
// Create entry
ConnReadEntry entry;
entry.count = count;
entry.buf = buf;
entry.handler = handler;
entry.ctx = ctx;
// Add entry to queue
{
std::lock_guard lck(readQueueMtx);
readQueue.push_back(entry);
}
// Notify read worker
readQueueCnd.notify_all();
}
void ConnClass::writeAsync(int count, uint8_t* buf) {
2021-07-16 18:13:18 +02:00
if (!connectionOpen) { return; }
// Create entry
ConnWriteEntry entry;
entry.count = count;
entry.buf = buf;
// Add entry to queue
{
std::lock_guard lck(writeQueueMtx);
writeQueue.push_back(entry);
}
// Notify write worker
writeQueueCnd.notify_all();
}
void ConnClass::readWorker() {
while (true) {
// Wait for wakeup and exit if it's for terminating the thread
std::unique_lock lck(readQueueMtx);
readQueueCnd.wait(lck, [this]() { return (readQueue.size() > 0 || stopWorkers); });
if (stopWorkers || !connectionOpen) { return; }
// Pop first element off the list
ConnReadEntry entry = readQueue[0];
readQueue.erase(readQueue.begin());
lck.unlock();
// Read from socket and send data to the handler
int ret = read(entry.count, entry.buf);
if (ret <= 0) {
{
std::lock_guard lck(connectionOpenMtx);
connectionOpen = false;
}
connectionOpenCnd.notify_all();
return;
}
entry.handler(ret, entry.buf, entry.ctx);
}
}
void ConnClass::writeWorker() {
while (true) {
// Wait for wakeup and exit if it's for terminating the thread
std::unique_lock lck(writeQueueMtx);
writeQueueCnd.wait(lck, [this]() { return (writeQueue.size() > 0 || stopWorkers); });
if (stopWorkers || !connectionOpen) { return; }
// Pop first element off the list
ConnWriteEntry entry = writeQueue[0];
writeQueue.erase(writeQueue.begin());
lck.unlock();
// Write to socket
if (!write(entry.count, entry.buf)) {
{
std::lock_guard lck(connectionOpenMtx);
connectionOpen = false;
}
connectionOpenCnd.notify_all();
return;
}
}
}
ListenerClass::ListenerClass(Socket listenSock) {
sock = listenSock;
listening = true;
acceptWorkerThread = std::thread(&ListenerClass::worker, this);
}
ListenerClass::~ListenerClass() {
close();
}
Conn ListenerClass::accept() {
2021-07-16 18:13:18 +02:00
if (!listening) { return NULL; }
std::lock_guard lck(acceptMtx);
Socket _sock;
// Accept socket
_sock = ::accept(sock, NULL, NULL);
2021-07-30 22:06:06 +02:00
#ifdef _WIN32
if (_sock < 0 || _sock == SOCKET_ERROR) {
2021-07-30 22:06:06 +02:00
#else
if (_sock < 0) {
#endif
listening = false;
throw std::runtime_error("Could not bind socket");
return NULL;
}
return Conn(new ConnClass(_sock));
}
void ListenerClass::acceptAsync(void (*handler)(Conn conn, void* ctx), void* ctx) {
2021-07-16 18:13:18 +02:00
if (!listening) { return; }
// Create entry
ListenerAcceptEntry entry;
entry.handler = handler;
entry.ctx = ctx;
// Add entry to queue
{
std::lock_guard lck(acceptQueueMtx);
acceptQueue.push_back(entry);
}
// Notify write worker
acceptQueueCnd.notify_all();
}
void ListenerClass::close() {
{
std::lock_guard lck(acceptQueueMtx);
stopWorker = true;
}
2021-07-16 18:13:18 +02:00
acceptQueueCnd.notify_all();
if (listening) {
#ifdef _WIN32
closesocket(sock);
#else
2021-07-16 18:13:18 +02:00
::shutdown(sock, SHUT_RDWR);
::close(sock);
#endif
}
if (acceptWorkerThread.joinable()) { acceptWorkerThread.join(); }
listening = false;
}
bool ListenerClass::isListening() {
return listening;
}
void ListenerClass::worker() {
while (true) {
// Wait for wakeup and exit if it's for terminating the thread
std::unique_lock lck(acceptQueueMtx);
acceptQueueCnd.wait(lck, [this]() { return (acceptQueue.size() > 0 || stopWorker); });
if (stopWorker || !listening) { return; }
// Pop first element off the list
ListenerAcceptEntry entry = acceptQueue[0];
acceptQueue.erase(acceptQueue.begin());
lck.unlock();
// Read from socket and send data to the handler
try {
Conn client = accept();
if (!client) {
listening = false;
return;
}
entry.handler(std::move(client), entry.ctx);
}
catch (std::exception e) {
listening = false;
return;
}
}
}
Conn connect(std::string host, uint16_t port) {
Socket sock;
#ifdef _WIN32
2021-09-20 19:59:35 +02:00
// Initialize WinSock2
if (!winsock_init) {
WSADATA wsa;
if (WSAStartup(MAKEWORD(2, 2), &wsa)) {
throw std::runtime_error("Could not initialize WinSock2");
return NULL;
}
winsock_init = true;
}
assert(winsock_init);
2021-07-30 23:39:28 +02:00
#else
signal(SIGPIPE, SIG_IGN);
#endif
// Create a socket
sock = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
if (sock < 0) {
throw std::runtime_error("Could not create socket");
return NULL;
}
// Get address from hostname/ip
hostent* remoteHost = gethostbyname(host.c_str());
if (remoteHost == NULL || remoteHost->h_addr_list[0] == NULL) {
throw std::runtime_error("Could get address from host");
return NULL;
}
uint32_t* naddr = (uint32_t*)remoteHost->h_addr_list[0];
// Create host address
struct sockaddr_in addr;
addr.sin_addr.s_addr = *naddr;
addr.sin_family = AF_INET;
addr.sin_port = htons(port);
// Connect to host
if (::connect(sock, (struct sockaddr*)&addr, sizeof(addr)) < 0) {
throw std::runtime_error("Could not connect to host");
return NULL;
}
return Conn(new ConnClass(sock));
}
Listener listen(std::string host, uint16_t port) {
Socket listenSock;
#ifdef _WIN32
2021-09-20 19:59:35 +02:00
// Initialize WinSock2
if (!winsock_init) {
WSADATA wsa;
if (WSAStartup(MAKEWORD(2, 2), &wsa)) {
throw std::runtime_error("Could not initialize WinSock2");
return NULL;
}
winsock_init = true;
}
assert(winsock_init);
2021-07-30 23:39:28 +02:00
#else
signal(SIGPIPE, SIG_IGN);
#endif
// Create a socket
listenSock = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
if (listenSock < 0) {
throw std::runtime_error("Could not create socket");
return NULL;
}
#ifndef _WIN32
// Allow port reusing if the app was killed or crashed
// and the socket is stuck in TIME_WAIT state.
// This option has a different meaning on Windows,
// so we use it only for non-Windows systems
int enable = 1;
if (setsockopt(listenSock, SOL_SOCKET, SO_REUSEADDR, &enable, sizeof(int)) < 0) {
throw std::runtime_error("Could not configure socket");
return NULL;
}
#endif
// Get address from hostname/ip
hostent* remoteHost = gethostbyname(host.c_str());
if (remoteHost == NULL || remoteHost->h_addr_list[0] == NULL) {
throw std::runtime_error("Could get address from host");
return NULL;
}
uint32_t* naddr = (uint32_t*)remoteHost->h_addr_list[0];
// Create host address
struct sockaddr_in addr;
addr.sin_addr.s_addr = *naddr;
addr.sin_family = AF_INET;
addr.sin_port = htons(port);
// Bind socket
if (bind(listenSock, (struct sockaddr*)&addr, sizeof(addr)) < 0) {
throw std::runtime_error("Could not bind socket");
return NULL;
}
// Listen
if (::listen(listenSock, SOMAXCONN) != 0) {
throw std::runtime_error("Could not listen");
return NULL;
}
return Listener(new ListenerClass(listenSock));
}
Conn openUDP(std::string host, uint16_t port, std::string remoteHost, uint16_t remotePort, bool bindSocket) {
Socket sock;
#ifdef _WIN32
2021-09-20 19:59:35 +02:00
// Initialize WinSock2
if (!winsock_init) {
WSADATA wsa;
if (WSAStartup(MAKEWORD(2, 2), &wsa)) {
throw std::runtime_error("Could not initialize WinSock2");
return NULL;
}
winsock_init = true;
}
assert(winsock_init);
2021-07-30 23:39:28 +02:00
#else
signal(SIGPIPE, SIG_IGN);
#endif
// Create a socket
2021-11-09 00:00:13 +01:00
sock = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
if (sock < 0) {
throw std::runtime_error("Could not create socket");
return NULL;
}
// Get address from local hostname/ip
hostent* _host = gethostbyname(host.c_str());
if (_host == NULL || _host->h_addr_list[0] == NULL) {
throw std::runtime_error("Could get address from host");
return NULL;
}
// Get address from remote hostname/ip
hostent* _remoteHost = gethostbyname(remoteHost.c_str());
if (_remoteHost == NULL || _remoteHost->h_addr_list[0] == NULL) {
throw std::runtime_error("Could get address from host");
return NULL;
}
uint32_t* rnaddr = (uint32_t*)_remoteHost->h_addr_list[0];
// Create host address
struct sockaddr_in addr;
addr.sin_addr.s_addr = INADDR_ANY; //*naddr;
addr.sin_family = AF_INET;
addr.sin_port = htons(port);
// Create remote host address
struct sockaddr_in raddr;
raddr.sin_addr.s_addr = *rnaddr;
raddr.sin_family = AF_INET;
raddr.sin_port = htons(remotePort);
// Bind socket
if (bindSocket) {
2021-11-09 00:00:13 +01:00
int err = bind(sock, (struct sockaddr*)&addr, sizeof(addr));
if (err < 0) {
throw std::runtime_error("Could not bind socket");
return NULL;
}
}
return Conn(new ConnClass(sock, raddr, true));
}
}