rtl-sdr-blog/src/tuner_fc0012.c

352 lines
8.1 KiB
C
Raw Normal View History

/*
* Fitipower FC0012 tuner driver
*
* Copyright (C) 2012 Hans-Frieder Vogt <hfvogt@gmx.net>
*
* modified for use in librtlsdr
* Copyright (C) 2012 Steve Markgraf <steve@steve-m.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <stdint.h>
#include <stdio.h>
#include "rtlsdr_i2c.h"
#include "tuner_fc0012.h"
static int fc0012_writereg(void *dev, uint8_t reg, uint8_t val)
{
uint8_t data[2];
data[0] = reg;
data[1] = val;
if (rtlsdr_i2c_write_fn(dev, FC0012_I2C_ADDR, data, 2) < 0)
return -1;
return 0;
}
static int fc0012_readreg(void *dev, uint8_t reg, uint8_t *val)
{
uint8_t data = reg;
if (rtlsdr_i2c_write_fn(dev, FC0012_I2C_ADDR, &data, 1) < 0)
return -1;
if (rtlsdr_i2c_read_fn(dev, FC0012_I2C_ADDR, &data, 1) < 0)
return -1;
*val = data;
return 0;
}
/* Incomplete list of register settings:
*
* Name Reg Bits Desc
* CHIP_ID 0x00 0-7 Chip ID (constant 0xA1)
* RF_A 0x01 0-3 Number of count-to-9 cycles in RF
* divider (suggested: 2..9)
* RF_M 0x02 0-7 Total number of cycles (to-8 and to-9)
* in RF divider
* RF_K_HIGH 0x03 0-6 Bits 8..14 of fractional divider
* RF_K_LOW 0x04 0-7 Bits 0..7 of fractional RF divider
* RF_OUTDIV_A 0x05 3-7 Power of two required?
* LNA_POWER_DOWN 0x06 0 Set to 1 to switch off low noise amp
* RF_OUTDIV_B 0x06 1 Set to select 3 instead of 2 for the
* RF output divider
* VCO_SPEED 0x06 3 Select tuning range of VCO:
* 0 = Low range, (ca. 1.1 - 1.5GHz)
* 1 = High range (ca. 1.4 - 1.8GHz)
* BANDWIDTH 0x06 6-7 Set bandwidth. 6MHz = 0x80, 7MHz=0x40
* 8MHz=0x00
* XTAL_SPEED 0x07 5 Set to 1 for 28.8MHz Crystal input
* or 0 for 36MHz
* <agc params> 0x08 0-7
* EN_CAL_RSSI 0x09 4 Enable calibrate RSSI
* (Receive Signal Strength Indicator)
* LNA_FORCE 0x0d 0
* AGC_FORCE 0x0d ?
* LNA_GAIN 0x13 3-4 Low noise amp gain
* LNA_COMPS 0x15 3 ?
* VCO_CALIB 0x0e 7 Set high then low to calibrate VCO
* (fast lock?)
* VCO_VOLTAGE 0x0e 0-6 Read Control voltage of VCO
* (big value -> low freq)
*/
int fc0012_init(void *dev)
{
int ret = 0;
unsigned int i;
uint8_t reg[] = {
0x00, /* dummy reg. 0 */
0x05, /* reg. 0x01 */
0x10, /* reg. 0x02 */
0x00, /* reg. 0x03 */
0x00, /* reg. 0x04 */
0x0f, /* reg. 0x05: may also be 0x0a */
0x00, /* reg. 0x06: divider 2, VCO slow */
0x00, /* reg. 0x07: may also be 0x0f */
0xff, /* reg. 0x08: AGC Clock divide by 256, AGC gain 1/256,
Loop Bw 1/8 */
0x6e, /* reg. 0x09: Disable LoopThrough, Enable LoopThrough: 0x6f */
0xb8, /* reg. 0x0a: Disable LO Test Buffer */
0x82, /* reg. 0x0b: Output Clock is same as clock frequency,
may also be 0x83 */
0xfc, /* reg. 0x0c: depending on AGC Up-Down mode, may need 0xf8 */
0x02, /* reg. 0x0d: AGC Not Forcing & LNA Forcing, 0x02 for DVB-T */
0x00, /* reg. 0x0e */
0x00, /* reg. 0x0f */
0x00, /* reg. 0x10: may also be 0x0d */
0x00, /* reg. 0x11 */
0x1f, /* reg. 0x12: Set to maximum gain */
0x08, /* reg. 0x13: Set to Middle Gain: 0x08,
Low Gain: 0x00, High Gain: 0x10, enable IX2: 0x80 */
0x00, /* reg. 0x14 */
0x04, /* reg. 0x15: Enable LNA COMPS */
};
#if 0
switch (rtlsdr_get_tuner_clock(dev)) {
case FC_XTAL_27_MHZ:
case FC_XTAL_28_8_MHZ:
reg[0x07] |= 0x20;
break;
case FC_XTAL_36_MHZ:
default:
break;
}
#endif
reg[0x07] |= 0x20;
// if (priv->dual_master)
reg[0x0c] |= 0x02;
for (i = 1; i < sizeof(reg); i++) {
ret = fc0012_writereg(dev, i, reg[i]);
if (ret)
break;
}
return ret;
}
int fc0012_set_params(void *dev, uint32_t freq, uint32_t bandwidth)
{
int i, ret = 0;
uint8_t reg[7], am, pm, multi, tmp;
uint64_t f_vco;
uint32_t xtal_freq_div_2;
uint16_t xin, xdiv;
int vco_select = 0;
xtal_freq_div_2 = rtlsdr_get_tuner_clock(dev) / 2;
/* select frequency divider and the frequency of VCO */
if (freq < 37084000) { /* freq * 96 < 3560000000 */
multi = 96;
reg[5] = 0x82;
reg[6] = 0x00;
} else if (freq < 55625000) { /* freq * 64 < 3560000000 */
multi = 64;
reg[5] = 0x82;
reg[6] = 0x02;
} else if (freq < 74167000) { /* freq * 48 < 3560000000 */
multi = 48;
reg[5] = 0x42;
reg[6] = 0x00;
} else if (freq < 111250000) { /* freq * 32 < 3560000000 */
multi = 32;
reg[5] = 0x42;
reg[6] = 0x02;
} else if (freq < 148334000) { /* freq * 24 < 3560000000 */
multi = 24;
reg[5] = 0x22;
reg[6] = 0x00;
} else if (freq < 222500000) { /* freq * 16 < 3560000000 */
multi = 16;
reg[5] = 0x22;
reg[6] = 0x02;
} else if (freq < 296667000) { /* freq * 12 < 3560000000 */
multi = 12;
reg[5] = 0x12;
reg[6] = 0x00;
} else if (freq < 445000000) { /* freq * 8 < 3560000000 */
multi = 8;
reg[5] = 0x12;
reg[6] = 0x02;
} else if (freq < 593334000) { /* freq * 6 < 3560000000 */
multi = 6;
reg[5] = 0x0a;
reg[6] = 0x00;
} else {
multi = 4;
reg[5] = 0x0a;
reg[6] = 0x02;
}
f_vco = freq * multi;
if (f_vco >= 3060000000U) {
reg[6] |= 0x08;
vco_select = 1;
}
if (freq >= 45000000) {
/* From divided value (XDIV) determined the FA and FP value */
xdiv = (uint16_t)(f_vco / xtal_freq_div_2);
if ((f_vco - xdiv * xtal_freq_div_2) >= (xtal_freq_div_2 / 2))
xdiv++;
pm = (uint8_t)(xdiv / 8);
am = (uint8_t)(xdiv - (8 * pm));
if (am < 2) {
am += 8;
pm--;
}
if (pm > 31) {
reg[1] = am + (8 * (pm - 31));
reg[2] = 31;
} else {
reg[1] = am;
reg[2] = pm;
}
if (reg[1] > 15) {
fprintf(stderr, "[FC0012] no valid PLL combination "
"found for %u Hz!\n", freq);
return -1;
}
} else {
/* fix for frequency less than 45 MHz */
reg[1] = 0x06;
reg[2] = 0x11;
}
/* fix clock out */
reg[6] |= 0x20;
/* From VCO frequency determines the XIN ( fractional part of Delta
Sigma PLL) and divided value (XDIV) */
xin = (uint16_t)((f_vco - (f_vco / xtal_freq_div_2) * xtal_freq_div_2) / 1000);
xin = (xin << 15) / (xtal_freq_div_2 / 1000);
if (xin >= 16384)
xin += 32768;
reg[3] = xin >> 8; /* xin with 9 bit resolution */
reg[4] = xin & 0xff;
reg[6] &= 0x3f; /* bits 6 and 7 describe the bandwidth */
switch (bandwidth) {
case 6000000:
reg[6] |= 0x80;
break;
case 7000000:
reg[6] |= 0x40;
break;
case 8000000:
default:
break;
}
/* modified for Realtek demod */
reg[5] |= 0x07;
for (i = 1; i <= 6; i++) {
ret = fc0012_writereg(dev, i, reg[i]);
if (ret)
goto exit;
}
/* VCO Calibration */
ret = fc0012_writereg(dev, 0x0e, 0x80);
if (!ret)
ret = fc0012_writereg(dev, 0x0e, 0x00);
/* VCO Re-Calibration if needed */
if (!ret)
ret = fc0012_writereg(dev, 0x0e, 0x00);
if (!ret) {
// msleep(10);
ret = fc0012_readreg(dev, 0x0e, &tmp);
}
if (ret)
goto exit;
/* vco selection */
tmp &= 0x3f;
if (vco_select) {
if (tmp > 0x3c) {
reg[6] &= ~0x08;
ret = fc0012_writereg(dev, 0x06, reg[6]);
if (!ret)
ret = fc0012_writereg(dev, 0x0e, 0x80);
if (!ret)
ret = fc0012_writereg(dev, 0x0e, 0x00);
}
} else {
if (tmp < 0x02) {
reg[6] |= 0x08;
ret = fc0012_writereg(dev, 0x06, reg[6]);
if (!ret)
ret = fc0012_writereg(dev, 0x0e, 0x80);
if (!ret)
ret = fc0012_writereg(dev, 0x0e, 0x00);
}
}
exit:
return ret;
}
int fc0012_set_gain(void *dev, int gain)
{
int ret;
uint8_t tmp = 0;
ret = fc0012_readreg(dev, 0x13, &tmp);
/* mask bits off */
tmp &= 0xe0;
switch (gain) {
case -99: /* -9.9 dB */
tmp |= 0x02;
break;
case -40: /* -4 dB */
break;
case 71:
tmp |= 0x08; /* 7.1 dB */
break;
case 179:
tmp |= 0x17; /* 17.9 dB */
break;
case 192:
default:
tmp |= 0x10; /* 19.2 dB */
break;
}
ret = fc0012_writereg(dev, 0x13, tmp);
return ret;
}