rtl-sdr-blog/src/rtl_fm.c

595 lines
15 KiB
C
Raw Normal View History

/*
* rtl-sdr, turns your Realtek RTL2832 based DVB dongle into a SDR receiver
* Copyright (C) 2012 by Steve Markgraf <steve@steve-m.de>
* Copyright (C) 2012 by Hoernchen <la@tfc-server.de>
* Copyright (C) 2012 by Kyle Keen <keenerd@gmail.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* written because people could not do real time
* FM demod on Atom hardware with GNU radio
* based on rtl_sdr.c and rtl_tcp.c
* todo: realtime ARMv5
* remove float math (disqualifies complex.h)
* replace atan2 with a fast approximation
* in-place array operations
* wide band support
* sanity checks
* nicer FIR than square
* (tried this, was twice as slow and did not sound much better)
* scale squelch to other input parameters
*/
#include <errno.h>
#include <signal.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#ifndef _WIN32
#include <unistd.h>
#else
#include <Windows.h>
#endif
#include <semaphore.h>
#include <pthread.h>
#include <libusb.h>
#include "rtl-sdr.h"
#define DEFAULT_SAMPLE_RATE 24000
#define DEFAULT_ASYNC_BUF_NUMBER 32
#define DEFAULT_BUF_LENGTH (1 * 16384)
#define MINIMAL_BUF_LENGTH 512
#define MAXIMAL_BUF_LENGTH (256 * 16384)
#define CONSEQ_SQUELCH 4
static pthread_t demod_thread;
static sem_t data_ready;
static int do_exit = 0;
static rtlsdr_dev_t *dev = NULL;
struct fm_state
{
int now_r;
int now_j;
int pre_r;
int pre_j;
int prev_index;
int downsample; /* min 1, max 256 */
int post_downsample;
int output_scale;
int squelch_level;
int squelch_hits;
uint8_t buf[DEFAULT_BUF_LENGTH];
uint32_t buf_len;
int signal[DEFAULT_BUF_LENGTH]; /* 16 bit signed i/q pairs */
int16_t signal2[DEFAULT_BUF_LENGTH]; /* signal has lowpass, signal2 has demod */
int signal_len;
FILE *file;
int edge;
uint32_t freqs[32];
int freq_len;
int freq_now;
uint32_t sample_rate;
int fir_enable;
int fir[256]; /* fir_len == downsample */
int fir_sum;
int custom_atan;
};
void usage(void)
{
#ifdef _WIN32
fprintf(stderr,"rtl_fm, a simple FM demodulator for RTL2832 based USB-sticks\n\n"
"Usage:\t rtl_fm-win.exe [device_index] [samplerate in kHz] "
"[gain] [frequency in Hz] [filename]\n");
#else
fprintf(stderr,
"rtl_fm, a simple narrow band FM demodulator for RTL2832 based DVB-T receivers\n\n"
"Usage:\t -f frequency_to_tune_to [Hz]\n"
"\t (use multiple -f for scanning)\n"
"\t[-s samplerate (default: 24000 Hz)]\n"
"\t[-d device_index (default: 0)]\n"
"\t[-g tuner_gain (default: -1dB)]\n"
"\t[-l squelch_level (default: 150)]\n"
"\t[-E freq sets lower edge (default: center)]\n"
"\tfilename (a '-' dumps samples to stdout)\n\n"
"Experimental quality/cpu options:\n"
"\t[-o oversampling (default: 1) !!BROKEN!!]\n"
"\t[-F enables high quality FIR (default: off/square)]\n"
"\t[-A enables high speed arctan (default: off)]\n\n"
"Produces signed 16 bit ints, use Sox to hear them.\n"
"\trtl_fm ... | play -t raw -r 24k -e signed-integer -b 16 -c 1 -V1 -\n\n");
#endif
exit(1);
}
#ifdef _WIN32
BOOL WINAPI
sighandler(int signum)
{
if (CTRL_C_EVENT == signum) {
fprintf(stderr, "Signal caught, exiting!\n");
do_exit = 1;
rtlsdr_cancel_async(dev);
return TRUE;
}
return FALSE;
}
#else
static void sighandler(int signum)
{
fprintf(stderr, "Signal caught, exiting!\n");
do_exit = 1;
rtlsdr_cancel_async(dev);
}
#endif
void rotate_90(unsigned char *buf, uint32_t len)
/* 90 rotation is 1+0j, 0+1j, -1+0j, 0-1j
or [0, 1, -3, 2, -4, -5, 7, -6] */
{
uint32_t i;
unsigned char tmp;
for (i=0; i<len; i+=8) {
/* uint8_t negation = 255 - x */
tmp = 255 - buf[i+3];
buf[i+3] = buf[i+2];
buf[i+2] = tmp;
buf[i+4] = 255 - buf[i+4];
buf[i+5] = 255 - buf[i+5];
tmp = 255 - buf[i+6];
buf[i+6] = buf[i+7];
buf[i+7] = tmp;
}
}
void low_pass(struct fm_state *fm, unsigned char *buf, uint32_t len)
/* simple square window FIR */
{
int i=0, i2=0;
while (i < (int)len) {
fm->now_r += ((int)buf[i] - 128);
fm->now_j += ((int)buf[i+1] - 128);
i += 2;
fm->prev_index++;
if (fm->prev_index < (fm->downsample)) {
continue;
}
fm->signal[i2] = fm->now_r * fm->output_scale;
fm->signal[i2+1] = fm->now_j * fm->output_scale;
fm->prev_index = -1;
fm->now_r = 0;
fm->now_j = 0;
i2 += 2;
}
fm->signal_len = i2;
}
void build_fir(struct fm_state *fm)
/* for now, a simple triangle
* fancy FIRs are equally expensive, so use one */
/* point = sum(sample[i] * fir[i] * fir_len / fir_sum) */
{
int i, len;
len = fm->downsample;
for(i = 0; i < len; i++) {
fm->fir[i] = i;
}
for(i = len-1; i <= 0; i--) {
fm->fir[i] = len - i;
}
fm->fir_sum = 0;
for(i = 0; i < len; i++) {
fm->fir_sum += fm->fir[i];
}
}
void low_pass_fir(struct fm_state *fm, unsigned char *buf, uint32_t len)
/* perform an arbitrary FIR, doubles CPU use */
// possibly bugged, or overflowing
{
int i=0, i2=0, i3=0;
while (i < (int)len) {
fm->prev_index++;
i3 = fm->prev_index;
fm->now_r += ((int)buf[i] - 128) * fm->fir[i3] * fm->downsample / fm->fir_sum;
fm->now_j += ((int)buf[i+1] - 128) * fm->fir[i3] * fm->downsample / fm->fir_sum;
i += 2;
if (fm->prev_index < (fm->downsample)) {
continue;
}
fm->signal[i2] = fm->now_r * fm->output_scale;
fm->signal[i2+1] = fm->now_j * fm->output_scale;
fm->prev_index = -1;
fm->now_r = 0;
fm->now_j = 0;
i2 += 2;
}
fm->signal_len = i2;
}
int low_pass_simple(int16_t *signal2, int len, int step)
// no wrap around, length must be multiple of step
{
int i, i2, sum;
for(i=0; i < len; i+=step) {
sum = 0;
for(i2=0; i2<step; i2++) {
sum += (int)signal2[i + i2];
}
signal2[i] = (int16_t)(sum / step);
}
return len / step;
}
/* define our own complex math ops
because ARMv5 has no hardware float */
void multiply(int ar, int aj, int br, int bj, int *cr, int *cj)
{
*cr = ar*br - aj*bj;
*cj = aj*br + ar*bj;
}
int polar_discriminant(int ar, int aj, int br, int bj)
{
int cr, cj;
double angle;
multiply(ar, aj, br, -bj, &cr, &cj);
angle = atan2((double)cj, (double)cr);
//if (angle > (3.14159) || angle < (-3.14159))
// {fprintf(stderr, "overflow %f\n", angle);}
return (int)(angle / 3.14159 * (1<<14));
}
int fast_atan2(int y, int x)
/* pre scaled for int16 */
{
int yabs, angle;
int pi4=(1<<12), pi34=3*(1<<12); // note pi = 1<<14
if (x==0 && y==0) {
return 0;
}
yabs = y;
if (yabs < 0) {
yabs = -yabs;
}
if (x >= 0) {
angle = pi4 - pi4 * (x-yabs) / (x+yabs);
} else {
angle = pi34 - pi4 * (x+yabs) / (yabs-x);
}
if (y < 0) {
return -angle;
}
return angle;
}
int polar_disc_fast(int ar, int aj, int br, int bj)
{
int cr, cj;
multiply(ar, aj, br, -bj, &cr, &cj);
return fast_atan2(cj, cr);
}
void fm_demod(struct fm_state *fm)
{
int i, pcm;
pcm = polar_discriminant(fm->signal[0], fm->signal[1],
fm->pre_r, fm->pre_j);
fm->signal2[0] = (int16_t)pcm;
for (i = 2; i < (fm->signal_len); i += 2) {
if (fm->custom_atan) {
pcm = polar_disc_fast(fm->signal[i], fm->signal[i+1],
fm->signal[i-2], fm->signal[i-1]);
} else {
pcm = polar_discriminant(fm->signal[i], fm->signal[i+1],
fm->signal[i-2], fm->signal[i-1]);
}
fm->signal2[i/2] = (int16_t)pcm;
}
fm->pre_r = fm->signal[fm->signal_len - 2];
fm->pre_j = fm->signal[fm->signal_len - 1];
}
int mad(int *samples, int len, int step)
/* mean average deviation */
{
int i=0, sum=0, ave=0;
for (i=0; i<len; i+=step) {
sum += samples[i];
}
ave = sum / (len * step);
sum = 0;
for (i=0; i<len; i+=step) {
sum += abs(samples[i] - ave);
}
return sum / (len * step);
}
int post_squelch(struct fm_state *fm)
/* returns 1 for active signal, 0 for no signal */
{
int i, i2, dev_r, dev_j, len, sq_l;
/* only for small samples, big samples need chunk processing */
len = fm->signal_len;
sq_l = fm->squelch_level;
dev_r = mad(&(fm->signal[0]), len, 2);
dev_j = mad(&(fm->signal[1]), len, 2);
if ((dev_r > sq_l) || (dev_j > sq_l)) {
fm->squelch_hits = 0;
return 1;
}
/* weak signal, kill it entirely */
for (i=0; i<len; i++) {
fm->signal2[i/2] = 0;
}
fm->squelch_hits++;
return 0;
}
static void optimal_settings(struct fm_state *fm, int freq, int hopping)
{
int r, capture_freq, capture_rate;
fm->downsample = (1000000 / fm->sample_rate) + 1;
fm->freq_now = freq;
capture_rate = fm->downsample * fm->sample_rate;
capture_freq = fm->freqs[freq] + capture_rate/4;
capture_freq += fm->edge * fm->sample_rate / 2;
fm->output_scale = (1<<15) / (128 * fm->downsample);
if (fm->output_scale < 1) {
fm->output_scale = 1;}
fm->output_scale = 1;
/* Set the frequency */
r = rtlsdr_set_center_freq(dev, (uint32_t)capture_freq);
if (hopping) {
return;}
fprintf(stderr, "Oversampling input by: %ix.\n", fm->downsample);
fprintf(stderr, "Oversampling output by: %ix.\n", fm->post_downsample);
fprintf(stderr, "Buffer size: %0.2fms\n",
1000 * 0.5 * (float)DEFAULT_BUF_LENGTH / (float)capture_rate);
if (r < 0) {
fprintf(stderr, "WARNING: Failed to set center freq.\n");}
else {
fprintf(stderr, "Tuned to %u Hz.\n", capture_freq);}
/* Set the sample rate */
fprintf(stderr, "Sampling at %u Hz.\n", capture_rate);
r = rtlsdr_set_sample_rate(dev, (uint32_t)capture_rate);
if (r < 0) {
fprintf(stderr, "WARNING: Failed to set sample rate.\n");}
}
void full_demod(unsigned char *buf, uint32_t len, struct fm_state *fm)
{
int sr, freq_next;
rotate_90(buf, len);
if (fm->fir_enable) {
low_pass_fir(fm, buf, len);
} else {
low_pass(fm, buf, len);
}
fm_demod(fm);
sr = post_squelch(fm);
if (fm->post_downsample > 1) {
fm->signal_len = low_pass_simple(fm->signal2, fm->signal_len, fm->post_downsample);}
/* ignore under runs for now */
fwrite(fm->signal2, 2, fm->signal_len/2, fm->file);
if (fm->freq_len > 1 && !sr && fm->squelch_hits > CONSEQ_SQUELCH) {
freq_next = (fm->freq_now + 1) % fm->freq_len;
optimal_settings(fm, freq_next, 1);
fm->squelch_hits = CONSEQ_SQUELCH + 1; /* hair trigger */
/* wait for settling and dump buffer */
usleep(5000);
rtlsdr_read_sync(dev, NULL, 4096, NULL);
}
}
static void rtlsdr_callback(unsigned char *buf, uint32_t len, void *ctx)
{
struct fm_state *fm2;
int dr_val;
if (do_exit) {
return;}
if (!ctx) {
return;}
fm2 = (struct fm_struct*)(ctx); // warning?
/* single threaded uses 25% less CPU? */
/* full_demod(buf, len, fm2); */
memcpy(fm2->buf, buf, len);
fm2->buf_len = len;
sem_getvalue(&data_ready, &dr_val);
if (!dr_val) {
sem_post(&data_ready);}
}
static void *demod_thread_fn(void *arg)
{
struct fm_state *fm2;
int r = 0;
fm2 = (struct fm_struct*)(arg); // warning?
while (!do_exit) {
sem_wait(&data_ready);
full_demod(fm2->buf, fm2->buf_len, fm2);
}
return 0;
}
int main(int argc, char **argv)
{
#ifndef _WIN32
struct sigaction sigact;
#endif
struct fm_state fm;
char *filename = NULL;
int n_read;
int r, opt;
int i, gain = -10; // tenths of a dB
uint8_t *buffer;
uint32_t dev_index = 0;
int device_count;
char vendor[256], product[256], serial[256];
fm.freqs[0] = 100000000;
fm.sample_rate = DEFAULT_SAMPLE_RATE;
fm.squelch_level = 150;
fm.freq_len = 0;
fm.edge = 0;
fm.fir_enable = 0;
fm.prev_index = -1;
fm.post_downsample = 1;
fm.custom_atan = 0;
sem_init(&data_ready, 0, 0);
#ifndef _WIN32
while ((opt = getopt(argc, argv, "d:f:g:s:b:l:o:EFA")) != -1) {
switch (opt) {
case 'd':
dev_index = atoi(optarg);
break;
case 'f':
fm.freqs[fm.freq_len] = (uint32_t)atof(optarg);
fm.freq_len++;
break;
case 'g':
gain = (int)(atof(optarg) * 10);
break;
case 'l':
fm.squelch_level = (int)atof(optarg);
break;
case 's':
fm.sample_rate = (uint32_t)atof(optarg);
break;
case 'o':
fm.post_downsample = (int)atof(optarg);
break;
case 'E':
fm.edge = 1;
break;
case 'F':
fm.fir_enable = 1;
break;
case 'A':
fm.custom_atan = 1;
break;
default:
usage();
break;
}
}
/* double sample_rate to limit to Δθ to ±π */
fm.sample_rate *= fm.post_downsample;
if (argc <= optind) {
usage();
} else {
filename = argv[optind];
}
#else
if(argc <6)
usage();
dev_index = atoi(argv[1]);
samp_rate = atoi(argv[2])*1000;
gain=(int)(atof(argv[3]) * 10);
fm.freqs[0] = atoi(argv[4]);
fm.freq_len = 1;
filename = argv[5];
#endif
buffer = malloc(DEFAULT_BUF_LENGTH * sizeof(uint8_t));
device_count = rtlsdr_get_device_count();
if (!device_count) {
fprintf(stderr, "No supported devices found.\n");
exit(1);
}
fprintf(stderr, "Found %d device(s):\n", device_count);
for (i = 0; i < device_count; i++) {
rtlsdr_get_device_usb_strings(i, vendor, product, serial);
fprintf(stderr, " %d: %s, %s, SN: %s\n", i, vendor, product, serial);
}
fprintf(stderr, "\n");
fprintf(stderr, "Using device %d: %s\n",
dev_index, rtlsdr_get_device_name(dev_index));
r = rtlsdr_open(&dev, dev_index);
if (r < 0) {
fprintf(stderr, "Failed to open rtlsdr device #%d.\n", dev_index);
exit(1);
}
#ifndef _WIN32
sigact.sa_handler = sighandler;
sigemptyset(&sigact.sa_mask);
sigact.sa_flags = 0;
sigaction(SIGINT, &sigact, NULL);
sigaction(SIGTERM, &sigact, NULL);
sigaction(SIGQUIT, &sigact, NULL);
sigaction(SIGPIPE, &sigact, NULL);
#else
SetConsoleCtrlHandler( (PHANDLER_ROUTINE) sighandler, TRUE );
#endif
optimal_settings(&fm, 0, 0);
build_fir(&fm);
/* Set the tuner gain */
r = rtlsdr_set_tuner_gain(dev, gain);
if (r < 0)
fprintf(stderr, "WARNING: Failed to set tuner gain.\n");
else
fprintf(stderr, "Tuner gain set to %0.2f dB.\n", gain/10.0);
if(strcmp(filename, "-") == 0) { /* Write samples to stdout */
fm.file = stdout;
} else {
fm.file = fopen(filename, "wb");
if (!fm.file) {
fprintf(stderr, "Failed to open %s\n", filename);
goto out;
}
}
/* Reset endpoint before we start reading from it (mandatory) */
r = rtlsdr_reset_buffer(dev);
if (r < 0)
fprintf(stderr, "WARNING: Failed to reset buffers.\n");
pthread_create(&demod_thread, NULL, demod_thread_fn, (void *)(&fm));
rtlsdr_read_async(dev, rtlsdr_callback, (void *)(&fm),
DEFAULT_ASYNC_BUF_NUMBER, DEFAULT_BUF_LENGTH);
if (do_exit)
fprintf(stderr, "\nUser cancel, exiting...\n");
else
fprintf(stderr, "\nLibrary error %d, exiting...\n", r);
if (fm.file != stdout)
fclose(fm.file);
rtlsdr_close(dev);
free (buffer);
out:
return r >= 0 ? r : -r;
}