mirror of
https://github.com/AlexandreRouma/SDRPlusPlus.git
synced 2025-10-21 13:19:22 +02:00
Beginning of code for the RSPduo + bugfix for the hackrf
This commit is contained in:
@@ -115,4 +115,206 @@ namespace dsp {
|
||||
stream<complex_t>* _in;
|
||||
|
||||
};
|
||||
|
||||
template <class T>
|
||||
class CarrierTrackingPLL: public generic_block<CarrierTrackingPLL<T>> {
|
||||
public:
|
||||
CarrierTrackingPLL() {}
|
||||
CarrierTrackingPLL(stream<complex_t>* in, float loopBandwidth) { init(in, loopBandwidth); }
|
||||
|
||||
void init(stream<complex_t>* in, float loopBandwidth) {
|
||||
_in = in;
|
||||
lastVCO.re = 1.0f;
|
||||
lastVCO.im = 0.0f;
|
||||
_loopBandwidth = loopBandwidth;
|
||||
|
||||
float dampningFactor = sqrtf(2.0f) / 2.0f;
|
||||
float denominator = (1.0 + 2.0 * dampningFactor * _loopBandwidth + _loopBandwidth * _loopBandwidth);
|
||||
_alpha = (4 * dampningFactor * _loopBandwidth) / denominator;
|
||||
_beta = (4 * _loopBandwidth * _loopBandwidth) / denominator;
|
||||
|
||||
generic_block<CarrierTrackingPLL<T>>::registerInput(_in);
|
||||
generic_block<CarrierTrackingPLL<T>>::registerOutput(&out);
|
||||
}
|
||||
|
||||
void setInput(stream<complex_t>* in) {
|
||||
generic_block<CarrierTrackingPLL<T>>::tempStop();
|
||||
generic_block<CarrierTrackingPLL<T>>::unregisterInput(_in);
|
||||
_in = in;
|
||||
generic_block<CarrierTrackingPLL<T>>::registerInput(_in);
|
||||
generic_block<CarrierTrackingPLL<T>>::tempStart();
|
||||
}
|
||||
|
||||
void setLoopBandwidth(float loopBandwidth) {
|
||||
generic_block<CarrierTrackingPLL<T>>::tempStop();
|
||||
_loopBandwidth = loopBandwidth;
|
||||
float dampningFactor = sqrtf(2.0f) / 2.0f;
|
||||
float denominator = (1.0 + 2.0 * dampningFactor * _loopBandwidth + _loopBandwidth * _loopBandwidth);
|
||||
_alpha = (4 * dampningFactor * _loopBandwidth) / denominator;
|
||||
_beta = (4 * _loopBandwidth * _loopBandwidth) / denominator;
|
||||
generic_block<CarrierTrackingPLL<T>>::tempStart();
|
||||
}
|
||||
|
||||
int run() {
|
||||
int count = _in->read();
|
||||
if (count < 0) { return -1; }
|
||||
|
||||
complex_t outVal;
|
||||
float error;
|
||||
|
||||
for (int i = 0; i < count; i++) {
|
||||
|
||||
// Mix the VFO with the input to create the output value
|
||||
outVal.re = (lastVCO.re*_in->readBuf[i].re) - ((-lastVCO.im)*_in->readBuf[i].im);
|
||||
outVal.im = ((-lastVCO.im)*_in->readBuf[i].re) + (lastVCO.re*_in->readBuf[i].im);
|
||||
|
||||
if constexpr (std::is_same_v<T, float>) {
|
||||
out.writeBuf[i] = outVal.fastPhase();
|
||||
}
|
||||
if constexpr (std::is_same_v<T, complex_t>) {
|
||||
out.writeBuf[i] = outVal;
|
||||
}
|
||||
|
||||
// Calculate the phase error estimation
|
||||
// TODO: Figure out why fastPhase doesn't work
|
||||
error = _in->readBuf[i].phase() - vcoPhase;
|
||||
if (error > 3.1415926535f) { error -= 2.0f * 3.1415926535f; }
|
||||
else if (error <= -3.1415926535f) { error += 2.0f * 3.1415926535f; }
|
||||
|
||||
// if (error > 1.0f) { error = 1.0f; }
|
||||
// else if (error < -1.0f) { error = -1.0f; }
|
||||
|
||||
// Integrate frequency and clamp it
|
||||
vcoFrequency += _beta * error;
|
||||
if (vcoFrequency > 1.0f) { vcoFrequency = 1.0f; }
|
||||
else if (vcoFrequency < -1.0f) { vcoFrequency = -1.0f; }
|
||||
|
||||
// Calculate new phase and wrap it
|
||||
vcoPhase += vcoFrequency + (_alpha * error);
|
||||
while (vcoPhase > (2.0f * FL_M_PI)) { vcoPhase -= (2.0f * FL_M_PI); }
|
||||
while (vcoPhase < (-2.0f * FL_M_PI)) { vcoPhase += (2.0f * FL_M_PI); }
|
||||
|
||||
// Calculate output
|
||||
lastVCO.re = cosf(vcoPhase);
|
||||
lastVCO.im = sinf(vcoPhase);
|
||||
|
||||
}
|
||||
|
||||
_in->flush();
|
||||
if (!out.swap(count)) { return -1; }
|
||||
return count;
|
||||
}
|
||||
|
||||
stream<T> out;
|
||||
|
||||
private:
|
||||
float _loopBandwidth = 1.0f;
|
||||
|
||||
float _alpha; // Integral coefficient
|
||||
float _beta; // Proportional coefficient
|
||||
float vcoFrequency = 0.0f;
|
||||
float vcoPhase = 0.0f;
|
||||
complex_t lastVCO;
|
||||
|
||||
stream<complex_t>* _in;
|
||||
|
||||
};
|
||||
|
||||
class PLL: public generic_block<PLL> {
|
||||
public:
|
||||
PLL() {}
|
||||
PLL(stream<complex_t>* in, float loopBandwidth) { init(in, loopBandwidth); }
|
||||
|
||||
void init(stream<complex_t>* in, float loopBandwidth) {
|
||||
_in = in;
|
||||
lastVCO.re = 1.0f;
|
||||
lastVCO.im = 0.0f;
|
||||
_loopBandwidth = loopBandwidth;
|
||||
|
||||
float dampningFactor = sqrtf(2.0f) / 2.0f;
|
||||
float denominator = (1.0 + 2.0 * dampningFactor * _loopBandwidth + _loopBandwidth * _loopBandwidth);
|
||||
_alpha = (4 * dampningFactor * _loopBandwidth) / denominator;
|
||||
_beta = (4 * _loopBandwidth * _loopBandwidth) / denominator;
|
||||
|
||||
generic_block<PLL>::registerInput(_in);
|
||||
generic_block<PLL>::registerOutput(&out);
|
||||
}
|
||||
|
||||
void setInput(stream<complex_t>* in) {
|
||||
generic_block<PLL>::tempStop();
|
||||
generic_block<PLL>::unregisterInput(_in);
|
||||
_in = in;
|
||||
generic_block<PLL>::registerInput(_in);
|
||||
generic_block<PLL>::tempStart();
|
||||
}
|
||||
|
||||
void setLoopBandwidth(float loopBandwidth) {
|
||||
generic_block<PLL>::tempStop();
|
||||
_loopBandwidth = loopBandwidth;
|
||||
float dampningFactor = sqrtf(2.0f) / 2.0f;
|
||||
float denominator = (1.0 + 2.0 * dampningFactor * _loopBandwidth + _loopBandwidth * _loopBandwidth);
|
||||
_alpha = (4 * dampningFactor * _loopBandwidth) / denominator;
|
||||
_beta = (4 * _loopBandwidth * _loopBandwidth) / denominator;
|
||||
generic_block<PLL>::tempStart();
|
||||
}
|
||||
|
||||
int run() {
|
||||
int count = _in->read();
|
||||
if (count < 0) { return -1; }
|
||||
|
||||
complex_t outVal;
|
||||
float error;
|
||||
|
||||
for (int i = 0; i < count; i++) {
|
||||
|
||||
// Mix the VFO with the input to create the output value
|
||||
outVal.re = (lastVCO.re*_in->readBuf[i].re) - ((-lastVCO.im)*_in->readBuf[i].im);
|
||||
outVal.im = ((-lastVCO.im)*_in->readBuf[i].re) + (lastVCO.re*_in->readBuf[i].im);
|
||||
|
||||
out.writeBuf[i] = lastVCO;
|
||||
|
||||
// Calculate the phase error estimation
|
||||
// TODO: Figure out why fastPhase doesn't work
|
||||
error = _in->readBuf[i].phase() - vcoPhase;
|
||||
if (error > 3.1415926535f) { error -= 2.0f * 3.1415926535f; }
|
||||
else if (error <= -3.1415926535f) { error += 2.0f * 3.1415926535f; }
|
||||
|
||||
// if (error > 1.0f) { error = 1.0f; }
|
||||
// else if (error < -1.0f) { error = -1.0f; }
|
||||
|
||||
// Integrate frequency and clamp it
|
||||
vcoFrequency += _beta * error;
|
||||
if (vcoFrequency > 1.0f) { vcoFrequency = 1.0f; }
|
||||
else if (vcoFrequency < -1.0f) { vcoFrequency = -1.0f; }
|
||||
|
||||
// Calculate new phase and wrap it
|
||||
vcoPhase += vcoFrequency + (_alpha * error);
|
||||
while (vcoPhase > (2.0f * FL_M_PI)) { vcoPhase -= (2.0f * FL_M_PI); }
|
||||
while (vcoPhase < (-2.0f * FL_M_PI)) { vcoPhase += (2.0f * FL_M_PI); }
|
||||
|
||||
// Calculate output
|
||||
lastVCO.re = cosf(vcoPhase);
|
||||
lastVCO.im = sinf(vcoPhase);
|
||||
|
||||
}
|
||||
|
||||
_in->flush();
|
||||
if (!out.swap(count)) { return -1; }
|
||||
return count;
|
||||
}
|
||||
|
||||
stream<complex_t> out;
|
||||
|
||||
private:
|
||||
float _loopBandwidth = 1.0f;
|
||||
|
||||
float _alpha; // Integral coefficient
|
||||
float _beta; // Proportional coefficient
|
||||
float vcoFrequency = 0.0f;
|
||||
float vcoPhase = 0.0f;
|
||||
complex_t lastVCO;
|
||||
|
||||
stream<complex_t>* _in;
|
||||
|
||||
};
|
||||
}
|
Reference in New Issue
Block a user