Beginning of code for the RSPduo + bugfix for the hackrf

This commit is contained in:
Ryzerth
2021-04-10 03:06:51 +02:00
parent aeab33127d
commit 26e623bec4
11 changed files with 796 additions and 43 deletions

View File

@ -84,6 +84,8 @@ namespace dsp {
omegaMax = _omega + (_omega * _omegaRelLimit);
_dynOmega = _omega;
memset(delay, 0, 1024 * sizeof(T));
generic_block<MMClockRecovery<T>>::registerInput(_in);
generic_block<MMClockRecovery<T>>::registerOutput(&out);
}

View File

@ -35,7 +35,6 @@ namespace dsp {
count = _in->read();
if (count < 0) { return -1; }
// Copy data into work buffer
memcpy(bufferStart, _in->readBuf, count - 1);
@ -61,6 +60,7 @@ namespace dsp {
// Else, check for a header
else if (memcmp(buffer + i, _syncword, _syncLen) == 0) {
bitsRead = 0;
//printf("Frame found!\n");
badFrameCount = 0;
continue;
}
@ -70,6 +70,7 @@ namespace dsp {
// try to save
if (badFrameCount < 5) {
badFrameCount++;
//printf("Frame found!\n");
bitsRead = 0;
continue;
}
@ -111,4 +112,252 @@ namespace dsp {
stream<uint8_t>* _in;
};
inline int MachesterHammingDistance(float* data, uint8_t* syncBits, int n) {
int dist = 0;
for (int i = 0; i < n; i++) {
if ((data[(2*i) + 1] > data[2*i]) != syncBits[i]) { dist++; }
}
return dist;
}
inline int HammingDistance(uint8_t* data, uint8_t* syncBits, int n) {
int dist = 0;
for (int i = 0; i < n; i++) {
if (data[i] != syncBits[i]) { dist++; }
}
return dist;
}
class ManchesterDeframer : public generic_block<ManchesterDeframer> {
public:
ManchesterDeframer() {}
ManchesterDeframer(stream<float>* in, int frameLen, uint8_t* syncWord, int syncLen) { init(in, frameLen, syncWord, syncLen); }
void init(stream<float>* in, int frameLen, uint8_t* syncWord, int syncLen) {
_in = in;
_frameLen = frameLen;
_syncword = new uint8_t[syncLen];
_syncLen = syncLen;
memcpy(_syncword, syncWord, syncLen);
buffer = new float[STREAM_BUFFER_SIZE + (syncLen * 2)];
memset(buffer, 0, syncLen * 2 * sizeof(float));
bufferStart = &buffer[syncLen * 2];
generic_block<ManchesterDeframer>::registerInput(_in);
generic_block<ManchesterDeframer>::registerOutput(&out);
}
int run() {
count = _in->read();
if (count < 0) { return -1; }
int readable;
// Copy data into work buffer
memcpy(bufferStart, _in->readBuf, (count - 1) * sizeof(float));
// Iterate through all symbols
for (int i = 0; i < count;) {
// If already in the process of reading bits
if (bitsRead >= 0) {
readable = std::min<int>(count - i, _frameLen - bitsRead);
memcpy(&out.writeBuf[bitsRead], &buffer[i], readable * sizeof(float));
bitsRead += readable;
i += readable;
if (bitsRead >= _frameLen) {
out.swap(_frameLen);
bitsRead = -1;
}
continue;
}
// Else, check for a header
if (MachesterHammingDistance(&buffer[i], _syncword, _syncLen) <= 2) {
bitsRead = 0;
continue;
}
i++;
}
// Keep last _syncLen symbols
memcpy(buffer, &_in->readBuf[count - (_syncLen * 2)], _syncLen * 2 * sizeof(float));
_in->flush();
return count;
}
stream<float> out;
private:
float* buffer;
float* bufferStart;
uint8_t* _syncword;
int count;
int _frameLen;
int _syncLen;
int bitsRead = -1;
stream<float>* _in;
};
class SymbolDeframer : public generic_block<SymbolDeframer> {
public:
SymbolDeframer() {}
SymbolDeframer(stream<uint8_t>* in, int frameLen, uint8_t* syncWord, int syncLen) { init(in, frameLen, syncWord, syncLen); }
void init(stream<uint8_t>* in, int frameLen, uint8_t* syncWord, int syncLen) {
_in = in;
_frameLen = frameLen;
_syncword = new uint8_t[syncLen];
_syncLen = syncLen;
memcpy(_syncword, syncWord, syncLen);
buffer = new uint8_t[STREAM_BUFFER_SIZE + syncLen];
memset(buffer, 0, syncLen);
bufferStart = &buffer[syncLen];
generic_block<SymbolDeframer>::registerInput(_in);
generic_block<SymbolDeframer>::registerOutput(&out);
}
int run() {
count = _in->read();
if (count < 0) { return -1; }
int readable;
// Copy data into work buffer
memcpy(bufferStart, _in->readBuf, count - 1);
// Iterate through all symbols
for (int i = 0; i < count;) {
// If already in the process of reading bits
if (bitsRead >= 0) {
readable = std::min<int>(count - i, _frameLen - bitsRead);
memcpy(&out.writeBuf[bitsRead], &buffer[i], readable);
bitsRead += readable;
i += readable;
if (bitsRead >= _frameLen) {
out.swap(_frameLen);
bitsRead = -1;
}
continue;
}
// Else, check for a header
if (HammingDistance(&buffer[i], _syncword, _syncLen) <= 2) {
bitsRead = 0;
continue;
}
i++;
}
// Keep last _syncLen symbols
memcpy(buffer, &_in->readBuf[count - _syncLen], _syncLen);
_in->flush();
return count;
}
stream<uint8_t> out;
private:
uint8_t* buffer;
uint8_t* bufferStart;
uint8_t* _syncword;
int count;
int _frameLen;
int _syncLen;
int bitsRead = -1;
stream<uint8_t>* _in;
};
class ManchesterDecoder : public generic_block<ManchesterDecoder> {
public:
ManchesterDecoder() {}
ManchesterDecoder(stream<float>* in, bool inverted) { init(in, inverted); }
void init(stream<float>* in, bool inverted) {
_in = in;
_inverted = inverted;
generic_block<ManchesterDecoder>::registerInput(_in);
generic_block<ManchesterDecoder>::registerOutput(&out);
}
int run() {
int count = _in->read();
if (count < 0) { return -1; }
if (_inverted) {
for (int i = 0; i < count; i += 2) {
out.writeBuf[i/2] = (_in->readBuf[i + 1] < _in->readBuf[i]);
}
}
else {
for (int i = 0; i < count; i += 2) {
out.writeBuf[i/2] = (_in->readBuf[i + 1] > _in->readBuf[i]);
}
}
_in->flush();
out.swap(count / 2);
return count;
}
stream<uint8_t> out;
private:
stream<float>* _in;
bool _inverted;
};
class BitPacker : public generic_block<BitPacker> {
public:
BitPacker() {}
BitPacker(stream<uint8_t>* in) { init(in); }
void init(stream<uint8_t>* in) {
_in = in;
generic_block<BitPacker>::registerInput(_in);
generic_block<BitPacker>::registerOutput(&out);
}
int run() {
int count = _in->read();
if (count < 0) { return -1; }
for (int i = 0; i < count; i++) {
if ((i % 8) == 0) { out.writeBuf[i / 8] = 0; }
out.writeBuf[i / 8] |= (_in->readBuf[i] & 1) << (7 - (i % 8));
}
_in->flush();
out.swap((count / 8) + (((count % 8) == 0) ? 0 : 1));
return count;
}
stream<uint8_t> out;
private:
stream<uint8_t>* _in;
};
}

View File

@ -500,7 +500,7 @@ namespace dsp {
public:
MSKDemod() {}
MSKDemod(stream<complex_t>* input, float sampleRate, float deviation, float baudRate, float omegaGain = (0.01*0.01) / 4, float muGain = 0.01f, float omegaRelLimit = 0.005f) {
init(input, sampleRate, deviation, baudRate);
init(input, sampleRate, deviation, baudRate, omegaGain, muGain, omegaRelLimit);
}
void init(stream<complex_t>* input, float sampleRate, float deviation, float baudRate, float omegaGain = (0.01*0.01) / 4, float muGain = 0.01f, float omegaRelLimit = 0.005f) {
@ -567,11 +567,11 @@ namespace dsp {
class PSKDemod : public generic_hier_block<PSKDemod<ORDER, OFFSET>> {
public:
PSKDemod() {}
PSKDemod(stream<complex_t>* input, float sampleRate, float baudRate, int RRCTapCount = 32, float RRCAlpha = 0.32f, float agcRate = 10e-4, float costasLoopBw = 0.004f, float omegaGain = (0.01*0.01) / 4, float muGain = 0.01f, float omegaRelLimit = 0.005f) {
PSKDemod(stream<complex_t>* input, float sampleRate, float baudRate, int RRCTapCount = 31, float RRCAlpha = 0.32f, float agcRate = 10e-4, float costasLoopBw = 0.004f, float omegaGain = (0.01*0.01) / 4, float muGain = 0.01f, float omegaRelLimit = 0.005f) {
init(input, sampleRate, baudRate, RRCTapCount, RRCAlpha, agcRate, costasLoopBw, omegaGain, muGain, omegaRelLimit);
}
void init(stream<complex_t>* input, float sampleRate, float baudRate, int RRCTapCount = 32, float RRCAlpha = 0.32f, float agcRate = 10e-4, float costasLoopBw = 0.004f, float omegaGain = (0.01*0.01) / 4, float muGain = 0.01f, float omegaRelLimit = 0.005f) {
void init(stream<complex_t>* input, float sampleRate, float baudRate, int RRCTapCount = 31, float RRCAlpha = 0.32f, float agcRate = 10e-4, float costasLoopBw = 0.004f, float omegaGain = (0.01*0.01) / 4, float muGain = 0.01f, float omegaRelLimit = 0.005f) {
_RRCTapCount = RRCTapCount;
_RRCAlpha = RRCAlpha;
_sampleRate = sampleRate;
@ -680,4 +680,89 @@ namespace dsp {
float _muGain;
float _omegaRelLimit;
};
class PMDemod : public generic_hier_block<PMDemod> {
public:
PMDemod() {}
PMDemod(stream<complex_t>* input, float sampleRate, float baudRate, float agcRate = 0.02e-3f, float pllLoopBandwidth = (0.06f*0.06f) / 4.0f, int rrcTapCount = 31, float rrcAlpha = 0.6f, float omegaGain = (0.01*0.01) / 4, float muGain = 0.01f, float omegaRelLimit = 0.005f) {
init(input, sampleRate, baudRate, agcRate, pllLoopBandwidth, rrcTapCount, rrcAlpha, omegaGain, muGain, omegaRelLimit);
}
void init(stream<complex_t>* input, float sampleRate, float baudRate, float agcRate = 0.02e-3f, float pllLoopBandwidth = (0.06f*0.06f) / 4.0f, int rrcTapCount = 31, float rrcAlpha = 0.6f, float omegaGain = (0.01*0.01) / 4, float muGain = 0.01f, float omegaRelLimit = 0.005f) {
_sampleRate = sampleRate;
_baudRate = baudRate;
_agcRate = agcRate;
_pllLoopBandwidth = pllLoopBandwidth;
_rrcTapCount = rrcTapCount;
_rrcAlpha = rrcAlpha;
_omegaGain = omegaGain;
_muGain = muGain;
_omegaRelLimit = omegaRelLimit;
agc.init(input, 1.0f, 65535, _agcRate);
pll.init(&agc.out, _pllLoopBandwidth);
rrcwin.init(_rrcTapCount, _sampleRate, _baudRate, _rrcAlpha);
rrc.init(&pll.out, &rrcwin);
recov.init(&rrc.out, _sampleRate / _baudRate, _omegaGain, _muGain, _omegaRelLimit);
out = &recov.out;
generic_hier_block<PMDemod>::registerBlock(&agc);
generic_hier_block<PMDemod>::registerBlock(&pll);
generic_hier_block<PMDemod>::registerBlock(&rrc);
generic_hier_block<PMDemod>::registerBlock(&recov);
}
void setInput(stream<complex_t>* input) {
agc.setInput(input);
}
void setAgcRate(float agcRate) {
_agcRate = agcRate;
agc.setRate(_agcRate);
}
void setPllLoopBandwidth(float pllLoopBandwidth) {
_pllLoopBandwidth = pllLoopBandwidth;
pll.setLoopBandwidth(_pllLoopBandwidth);
}
void setRRCParams(int rrcTapCount, float rrcAlpha) {
_rrcTapCount = rrcTapCount;
_rrcAlpha = rrcAlpha;
rrcwin.setTapCount(_rrcTapCount);
rrcwin.setAlpha(_rrcAlpha);
rrc.updateWindow(&rrcwin);
}
void setMMGains(float omegaGain, float muGain) {
_omegaGain = omegaGain;
_muGain = muGain;
recov.setGains(_omegaGain, _muGain);
}
void setOmegaRelLimit(float omegaRelLimit) {
_omegaRelLimit = omegaRelLimit;
recov.setOmegaRelLimit(_omegaRelLimit);
}
stream<float>* out = NULL;
private:
dsp::ComplexAGC agc;
dsp::CarrierTrackingPLL<float> pll;
dsp::RRCTaps rrcwin;
dsp::FIR<float> rrc;
dsp::MMClockRecovery<float> recov;
float _sampleRate;
float _baudRate;
float _agcRate;
float _pllLoopBandwidth;
int _rrcTapCount;
float _rrcAlpha;
float _omegaGain;
float _muGain;
float _omegaRelLimit;
};
}

View File

@ -115,4 +115,206 @@ namespace dsp {
stream<complex_t>* _in;
};
template <class T>
class CarrierTrackingPLL: public generic_block<CarrierTrackingPLL<T>> {
public:
CarrierTrackingPLL() {}
CarrierTrackingPLL(stream<complex_t>* in, float loopBandwidth) { init(in, loopBandwidth); }
void init(stream<complex_t>* in, float loopBandwidth) {
_in = in;
lastVCO.re = 1.0f;
lastVCO.im = 0.0f;
_loopBandwidth = loopBandwidth;
float dampningFactor = sqrtf(2.0f) / 2.0f;
float denominator = (1.0 + 2.0 * dampningFactor * _loopBandwidth + _loopBandwidth * _loopBandwidth);
_alpha = (4 * dampningFactor * _loopBandwidth) / denominator;
_beta = (4 * _loopBandwidth * _loopBandwidth) / denominator;
generic_block<CarrierTrackingPLL<T>>::registerInput(_in);
generic_block<CarrierTrackingPLL<T>>::registerOutput(&out);
}
void setInput(stream<complex_t>* in) {
generic_block<CarrierTrackingPLL<T>>::tempStop();
generic_block<CarrierTrackingPLL<T>>::unregisterInput(_in);
_in = in;
generic_block<CarrierTrackingPLL<T>>::registerInput(_in);
generic_block<CarrierTrackingPLL<T>>::tempStart();
}
void setLoopBandwidth(float loopBandwidth) {
generic_block<CarrierTrackingPLL<T>>::tempStop();
_loopBandwidth = loopBandwidth;
float dampningFactor = sqrtf(2.0f) / 2.0f;
float denominator = (1.0 + 2.0 * dampningFactor * _loopBandwidth + _loopBandwidth * _loopBandwidth);
_alpha = (4 * dampningFactor * _loopBandwidth) / denominator;
_beta = (4 * _loopBandwidth * _loopBandwidth) / denominator;
generic_block<CarrierTrackingPLL<T>>::tempStart();
}
int run() {
int count = _in->read();
if (count < 0) { return -1; }
complex_t outVal;
float error;
for (int i = 0; i < count; i++) {
// Mix the VFO with the input to create the output value
outVal.re = (lastVCO.re*_in->readBuf[i].re) - ((-lastVCO.im)*_in->readBuf[i].im);
outVal.im = ((-lastVCO.im)*_in->readBuf[i].re) + (lastVCO.re*_in->readBuf[i].im);
if constexpr (std::is_same_v<T, float>) {
out.writeBuf[i] = outVal.fastPhase();
}
if constexpr (std::is_same_v<T, complex_t>) {
out.writeBuf[i] = outVal;
}
// Calculate the phase error estimation
// TODO: Figure out why fastPhase doesn't work
error = _in->readBuf[i].phase() - vcoPhase;
if (error > 3.1415926535f) { error -= 2.0f * 3.1415926535f; }
else if (error <= -3.1415926535f) { error += 2.0f * 3.1415926535f; }
// if (error > 1.0f) { error = 1.0f; }
// else if (error < -1.0f) { error = -1.0f; }
// Integrate frequency and clamp it
vcoFrequency += _beta * error;
if (vcoFrequency > 1.0f) { vcoFrequency = 1.0f; }
else if (vcoFrequency < -1.0f) { vcoFrequency = -1.0f; }
// Calculate new phase and wrap it
vcoPhase += vcoFrequency + (_alpha * error);
while (vcoPhase > (2.0f * FL_M_PI)) { vcoPhase -= (2.0f * FL_M_PI); }
while (vcoPhase < (-2.0f * FL_M_PI)) { vcoPhase += (2.0f * FL_M_PI); }
// Calculate output
lastVCO.re = cosf(vcoPhase);
lastVCO.im = sinf(vcoPhase);
}
_in->flush();
if (!out.swap(count)) { return -1; }
return count;
}
stream<T> out;
private:
float _loopBandwidth = 1.0f;
float _alpha; // Integral coefficient
float _beta; // Proportional coefficient
float vcoFrequency = 0.0f;
float vcoPhase = 0.0f;
complex_t lastVCO;
stream<complex_t>* _in;
};
class PLL: public generic_block<PLL> {
public:
PLL() {}
PLL(stream<complex_t>* in, float loopBandwidth) { init(in, loopBandwidth); }
void init(stream<complex_t>* in, float loopBandwidth) {
_in = in;
lastVCO.re = 1.0f;
lastVCO.im = 0.0f;
_loopBandwidth = loopBandwidth;
float dampningFactor = sqrtf(2.0f) / 2.0f;
float denominator = (1.0 + 2.0 * dampningFactor * _loopBandwidth + _loopBandwidth * _loopBandwidth);
_alpha = (4 * dampningFactor * _loopBandwidth) / denominator;
_beta = (4 * _loopBandwidth * _loopBandwidth) / denominator;
generic_block<PLL>::registerInput(_in);
generic_block<PLL>::registerOutput(&out);
}
void setInput(stream<complex_t>* in) {
generic_block<PLL>::tempStop();
generic_block<PLL>::unregisterInput(_in);
_in = in;
generic_block<PLL>::registerInput(_in);
generic_block<PLL>::tempStart();
}
void setLoopBandwidth(float loopBandwidth) {
generic_block<PLL>::tempStop();
_loopBandwidth = loopBandwidth;
float dampningFactor = sqrtf(2.0f) / 2.0f;
float denominator = (1.0 + 2.0 * dampningFactor * _loopBandwidth + _loopBandwidth * _loopBandwidth);
_alpha = (4 * dampningFactor * _loopBandwidth) / denominator;
_beta = (4 * _loopBandwidth * _loopBandwidth) / denominator;
generic_block<PLL>::tempStart();
}
int run() {
int count = _in->read();
if (count < 0) { return -1; }
complex_t outVal;
float error;
for (int i = 0; i < count; i++) {
// Mix the VFO with the input to create the output value
outVal.re = (lastVCO.re*_in->readBuf[i].re) - ((-lastVCO.im)*_in->readBuf[i].im);
outVal.im = ((-lastVCO.im)*_in->readBuf[i].re) + (lastVCO.re*_in->readBuf[i].im);
out.writeBuf[i] = lastVCO;
// Calculate the phase error estimation
// TODO: Figure out why fastPhase doesn't work
error = _in->readBuf[i].phase() - vcoPhase;
if (error > 3.1415926535f) { error -= 2.0f * 3.1415926535f; }
else if (error <= -3.1415926535f) { error += 2.0f * 3.1415926535f; }
// if (error > 1.0f) { error = 1.0f; }
// else if (error < -1.0f) { error = -1.0f; }
// Integrate frequency and clamp it
vcoFrequency += _beta * error;
if (vcoFrequency > 1.0f) { vcoFrequency = 1.0f; }
else if (vcoFrequency < -1.0f) { vcoFrequency = -1.0f; }
// Calculate new phase and wrap it
vcoPhase += vcoFrequency + (_alpha * error);
while (vcoPhase > (2.0f * FL_M_PI)) { vcoPhase -= (2.0f * FL_M_PI); }
while (vcoPhase < (-2.0f * FL_M_PI)) { vcoPhase += (2.0f * FL_M_PI); }
// Calculate output
lastVCO.re = cosf(vcoPhase);
lastVCO.im = sinf(vcoPhase);
}
_in->flush();
if (!out.swap(count)) { return -1; }
return count;
}
stream<complex_t> out;
private:
float _loopBandwidth = 1.0f;
float _alpha; // Integral coefficient
float _beta; // Proportional coefficient
float vcoFrequency = 0.0f;
float vcoPhase = 0.0f;
complex_t lastVCO;
stream<complex_t>* _in;
};
}

View File

@ -1,6 +1,7 @@
#pragma once
#include <dsp/block.h>
#include <dsp/buffer.h>
#include <fstream>
namespace dsp {
template <class T>
@ -128,4 +129,53 @@ namespace dsp {
stream<T>* _in;
};
template <class T>
class FileSink : public generic_block<FileSink<T>> {
public:
FileSink() {}
FileSink(stream<T>* in, std::string path) { init(in, path); }
~FileSink() {
generic_block<FileSink<T>>::stop();
if (file.is_open()) { file.close(); }
}
void init(stream<T>* in, std::string path) {
_in = in;
file = std::ofstream(path, std::ios::binary);
generic_block<FileSink<T>>::registerInput(_in);
}
void setInput(stream<T>* in) {
std::lock_guard<std::mutex> lck(generic_block<FileSink<T>>::ctrlMtx);
generic_block<FileSink<T>>::tempStop();
generic_block<FileSink<T>>::unregisterInput(_in);
_in = in;
generic_block<FileSink<T>>::registerInput(_in);
generic_block<FileSink<T>>::tempStart();
}
bool isOpen() {
return file.is_open();
}
int run() {
int count = _in->read();
if (count < 0) { return -1; }
if (file.is_open()) {
file.write((char*)_in->readBuf, count * sizeof(T));
}
_in->flush();
return count;
}
private:
stream<T>* _in;
std::ofstream file;
};
}

View File

@ -1,7 +1,8 @@
#include <gui/widgets/symbol_diagram.h>
namespace ImGui {
SymbolDiagram::SymbolDiagram() {
SymbolDiagram::SymbolDiagram(float scale) {
_scale = scale;
memset(buffer, 0, 1024 * sizeof(float));
}
@ -23,9 +24,11 @@ namespace ImGui {
window->DrawList->AddRectFilled(min, ImVec2(min.x+size.x, min.y+size.y), IM_COL32(0,0,0,255));
ImU32 col = ImGui::GetColorU32(ImGuiCol_CheckMark, 0.7f);
float increment = size.x / 1024.0f;
float val;
for (int i = 0; i < 1024; i++) {
if (buffer[i] > 1.0f || buffer[i] < -1.0f) { continue; }
window->DrawList->AddCircleFilled(ImVec2(((float)i * increment) + min.x, ((buffer[i] + 1) * (size.y*0.5f)) + min.y), 2, col);
val = buffer[i] * _scale;
if (val > 1.0f || val < -1.0f) { continue; }
window->DrawList->AddCircleFilled(ImVec2(((float)i * increment) + min.x, ((val + 1) * (size.y*0.5f)) + min.y), 2, col);
}
}

View File

@ -8,7 +8,7 @@
namespace ImGui {
class SymbolDiagram {
public:
SymbolDiagram();
SymbolDiagram(float _scale = 1.0f);
void draw(const ImVec2& size_arg = ImVec2(0, 0));
@ -19,6 +19,7 @@ namespace ImGui {
private:
std::mutex bufferMtx;
float buffer[1024];
float _scale;
};
}