SDRPlusPlus/src/dsp/resampling.h

775 lines
25 KiB
C
Raw Normal View History

2020-06-22 16:45:57 +02:00
#pragma once
#include <thread>
#include <dsp/filter.h>
#include <dsp/stream.h>
#include <dsp/types.h>
#include <numeric>
2020-07-20 00:43:36 +02:00
#include <algorithm>
2020-06-22 16:45:57 +02:00
namespace dsp {
template <class T>
class Interpolator {
public:
Interpolator() {
}
Interpolator(stream<T>* in, float interpolation, int blockSize) : output(blockSize * interpolation * 2) {
_input = in;
_interpolation = interpolation;
_blockSize = blockSize;
}
void init(stream<T>* in, float interpolation, int blockSize) {
2020-07-09 16:02:58 +02:00
output.init(blockSize * 2 * interpolation);
2020-06-22 16:45:57 +02:00
_input = in;
_interpolation = interpolation;
_blockSize = blockSize;
}
void start() {
if (running) {
return;
}
_workerThread = std::thread(_worker, this);
running = true;
}
void stop() {
if (!running) {
return;
}
_input->stopReader();
output.stopWriter();
_workerThread.join();
_input->clearReadStop();
output.clearWriteStop();
running = false;
}
void setInterpolation(float interpolation) {
if (running) {
return;
}
_interpolation = interpolation;
output.setMaxLatency(_blockSize * _interpolation * 2);
}
void setBlockSize(int blockSize) {
if (running) {
return;
}
_blockSize = blockSize;
output.setMaxLatency(_blockSize * _interpolation * 2);
}
void setInput(stream<T>* input) {
if (running) {
return;
}
_input = input;
}
stream<T> output;
private:
static void _worker(Interpolator<T>* _this) {
T* inBuf = new T[_this->_blockSize];
T* outBuf = new T[_this->_blockSize * _this->_interpolation];
int outCount = _this->_blockSize * _this->_interpolation;
2020-07-19 15:59:44 +02:00
int interp = _this->_interpolation;
int count = 0;
2020-06-22 16:45:57 +02:00
while (true) {
if (_this->_input->read(inBuf, _this->_blockSize) < 0) { break; };
for (int i = 0; i < outCount; i++) {
outBuf[i] = inBuf[(int)((float)i / _this->_interpolation)];
}
2020-07-19 15:59:44 +02:00
// for (int i = 0; i < outCount; i += interp) {
// outBuf[i] = inBuf[count];
// count++;
// }
count = 0;
2020-06-22 16:45:57 +02:00
if (_this->output.write(outBuf, outCount) < 0) { break; };
}
delete[] inBuf;
delete[] outBuf;
}
stream<T>* _input;
int _blockSize;
float _interpolation;
std::thread _workerThread;
bool running = false;
};
class BlockDecimator {
public:
BlockDecimator() {
}
BlockDecimator(stream<complex_t>* in, int skip, int blockSize) : output(blockSize * 2) {
_input = in;
_skip = skip;
_blockSize = blockSize;
}
void init(stream<complex_t>* in, int skip, int blockSize) {
output.init(blockSize * 2);
_input = in;
_skip = skip;
_blockSize = blockSize;
}
void start() {
if (running) {
return;
}
_workerThread = std::thread(_worker, this);
2020-07-19 15:59:44 +02:00
running = true;
2020-06-22 16:45:57 +02:00
}
void stop() {
if (!running) {
return;
}
_input->stopReader();
output.stopWriter();
_workerThread.join();
_input->clearReadStop();
output.clearWriteStop();
running = false;
}
void setBlockSize(int blockSize) {
if (running) {
return;
}
_blockSize = blockSize;
output.setMaxLatency(blockSize * 2);
}
void setSkip(int skip) {
if (running) {
return;
}
_skip = skip;
}
stream<complex_t> output;
private:
static void _worker(BlockDecimator* _this) {
complex_t* buf = new complex_t[_this->_blockSize];
bool delay = _this->_skip < 0;
int readCount = std::min<int>(_this->_blockSize + _this->_skip, _this->_blockSize);
int skip = std::max<int>(_this->_skip, 0);
int delaySize = (-_this->_skip) * sizeof(complex_t);
complex_t* start = &buf[std::max<int>(-_this->_skip, 0)];
complex_t* delayStart = &buf[_this->_blockSize + _this->_skip];
2020-06-22 16:45:57 +02:00
while (true) {
if (delay) {
memmove(buf, delayStart, delaySize);
}
if (_this->_input->readAndSkip(start, readCount, skip) < 0) { break; };
2020-07-19 15:59:44 +02:00
if (_this->output.write(buf, _this->_blockSize) < 0) { break; };
2020-06-22 16:45:57 +02:00
}
2020-07-19 15:59:44 +02:00
delete[] buf;
2020-06-22 16:45:57 +02:00
}
stream<complex_t>* _input;
int _blockSize;
int _skip;
std::thread _workerThread;
bool running = false;
};
2020-07-19 15:59:44 +02:00
class FIRResampler {
public:
FIRResampler() {
}
void init(stream<complex_t>* in, float inputSampleRate, float outputSampleRate, int blockSize, float passBand = -1.0f, float transWidth = -1.0f) {
_input = in;
_outputSampleRate = outputSampleRate;
_inputSampleRate = inputSampleRate;
int _gcd = std::gcd((int)inputSampleRate, (int)outputSampleRate);
_interp = outputSampleRate / _gcd;
_decim = inputSampleRate / _gcd;
_blockSize = blockSize;
outputBlockSize = (blockSize * _interp) / _decim;
output.init(outputBlockSize * 2);
float cutoff = std::min<float>(_outputSampleRate / 2.0f, _inputSampleRate / 2.0f);
if (passBand > 0.0f && transWidth > 0.0f) {
dsp::BlackmanWindow(_taps, _inputSampleRate * _interp, passBand, transWidth);
}
else {
dsp::BlackmanWindow(_taps, _inputSampleRate * _interp, cutoff, cutoff);
}
}
void start() {
if (running) {
return;
}
_workerThread = std::thread(_worker, this);
running = true;
}
void stop() {
if (!running) {
return;
}
_input->stopReader();
output.stopWriter();
_workerThread.join();
_input->clearReadStop();
output.clearWriteStop();
running = false;
}
void setInputSampleRate(float inputSampleRate, int blockSize = -1, float passBand = -1.0f, float transWidth = -1.0f) {
stop();
_inputSampleRate = inputSampleRate;
int _gcd = std::gcd((int)inputSampleRate, (int)_outputSampleRate);
_interp = _outputSampleRate / _gcd;
_decim = inputSampleRate / _gcd;
float cutoff = std::min<float>(_outputSampleRate / 2.0f, _inputSampleRate / 2.0f);
if (passBand > 0.0f && transWidth > 0.0f) {
dsp::BlackmanWindow(_taps, _inputSampleRate * _interp, passBand, transWidth);
}
else {
dsp::BlackmanWindow(_taps, _inputSampleRate * _interp, cutoff, cutoff);
}
if (blockSize > 0) {
_blockSize = blockSize;
}
outputBlockSize = (_blockSize * _interp) / _decim;
output.setMaxLatency(outputBlockSize * 2);
start();
}
void setOutputSampleRate(float outputSampleRate, float passBand = -1.0f, float transWidth = -1.0f) {
stop();
_outputSampleRate = outputSampleRate;
int _gcd = std::gcd((int)_inputSampleRate, (int)outputSampleRate);
_interp = outputSampleRate / _gcd;
_decim = _inputSampleRate / _gcd;
outputBlockSize = (_blockSize * _interp) / _decim;
output.setMaxLatency(outputBlockSize * 2);
float cutoff = std::min<float>(_outputSampleRate / 2.0f, _inputSampleRate / 2.0f);
if (passBand > 0.0f && transWidth > 0.0f) {
dsp::BlackmanWindow(_taps, _inputSampleRate * _interp, passBand, transWidth);
}
else {
dsp::BlackmanWindow(_taps, _inputSampleRate * _interp, cutoff, cutoff);
}
start();
}
void setFilterParams(float passBand, float transWidth) {
stop();
dsp::BlackmanWindow(_taps, _inputSampleRate * _interp, passBand, transWidth);
start();
}
void setBlockSize(int blockSize) {
stop();
_blockSize = blockSize;
outputBlockSize = (_blockSize * _interp) / _decim;
output.setMaxLatency(outputBlockSize * 2);
start();
}
void setInput(stream<complex_t>* input) {
if (running) {
return;
}
_input = input;
}
int getOutputBlockSize() {
return outputBlockSize;
}
stream<complex_t> output;
private:
static void _worker(FIRResampler* _this) {
complex_t* inBuf = new complex_t[_this->_blockSize];
complex_t* outBuf = new complex_t[_this->outputBlockSize];
2020-07-20 16:04:45 +02:00
int inCount = _this->_blockSize;
2020-07-19 15:59:44 +02:00
int outCount = _this->outputBlockSize;
2020-08-16 03:39:05 +02:00
int interp = _this->_interp;
int decim = _this->_decim;
float correction = interp;//(float)sqrt((float)interp);
2020-07-19 15:59:44 +02:00
int tapCount = _this->_taps.size();
2020-08-16 03:39:05 +02:00
float* taps = new float[tapCount];
for (int i = 0; i < tapCount; i++) {
taps[i] = _this->_taps[i] * correction;
}
2020-07-19 15:59:44 +02:00
complex_t* delayBuf = new complex_t[tapCount];
2020-07-20 16:04:45 +02:00
complex_t* delayStart = &inBuf[std::max<int>(inCount - tapCount, 0)];
2020-07-19 15:59:44 +02:00
int delaySize = tapCount * sizeof(complex_t);
2020-07-20 16:04:45 +02:00
complex_t* delayBufEnd = &delayBuf[std::max<int>(tapCount - inCount, 0)];
2020-07-20 17:21:58 +02:00
int moveSize = std::min<int>(inCount, tapCount - inCount) * sizeof(complex_t);
2020-07-20 16:04:45 +02:00
int inSize = inCount * sizeof(complex_t);
2020-07-19 15:59:44 +02:00
2020-07-20 16:04:45 +02:00
int afterInterp = inCount * interp;
2020-07-19 15:59:44 +02:00
int outIndex = 0;
2020-08-04 21:34:56 +02:00
while (true) {
2020-07-20 16:04:45 +02:00
if (_this->_input->read(inBuf, inCount) < 0) { break; };
2020-07-19 15:59:44 +02:00
for (int i = 0; outIndex < outCount; i += decim) {
outBuf[outIndex].i = 0;
2020-07-20 16:04:45 +02:00
outBuf[outIndex].q = 0;
2020-08-16 03:39:05 +02:00
for (int j = i % interp; j < tapCount; j += interp) {
outBuf[outIndex].i += GET_FROM_RIGHT_BUF(inBuf, delayBuf, tapCount, (i - j) / interp).i * taps[j];
outBuf[outIndex].q += GET_FROM_RIGHT_BUF(inBuf, delayBuf, tapCount, (i - j) / interp).q * taps[j];
2020-07-19 15:59:44 +02:00
}
outIndex++;
}
outIndex = 0;
2020-07-20 16:04:45 +02:00
if (tapCount > inCount) {
memmove(delayBuf, delayBufEnd, moveSize);
memcpy(delayBufEnd, delayStart, inSize);
}
else {
memcpy(delayBuf, delayStart, delaySize);
}
2020-07-19 15:59:44 +02:00
if (_this->output.write(outBuf, _this->outputBlockSize) < 0) { break; };
}
delete[] inBuf;
delete[] outBuf;
delete[] delayBuf;
2020-08-16 03:39:05 +02:00
delete[] taps;
2020-07-19 15:59:44 +02:00
}
std::thread _workerThread;
stream<complex_t>* _input;
std::vector<float> _taps;
int _interp;
int _decim;
int outputBlockSize;
float _outputSampleRate;
float _inputSampleRate;
int _blockSize;
bool running = false;
};
class FloatFIRResampler {
public:
FloatFIRResampler() {
}
void init(stream<float>* in, float inputSampleRate, float outputSampleRate, int blockSize, float passBand = -1.0f, float transWidth = -1.0f) {
_input = in;
_outputSampleRate = outputSampleRate;
_inputSampleRate = inputSampleRate;
int _gcd = std::gcd((int)inputSampleRate, (int)outputSampleRate);
_interp = outputSampleRate / _gcd;
_decim = inputSampleRate / _gcd;
_blockSize = blockSize;
outputBlockSize = (blockSize * _interp) / _decim;
output.init(outputBlockSize * 2);
float cutoff = std::min<float>(_outputSampleRate / 2.0f, _inputSampleRate / 2.0f);
if (passBand > 0.0f && transWidth > 0.0f) {
dsp::BlackmanWindow(_taps, _inputSampleRate * _interp, passBand, transWidth);
}
else {
dsp::BlackmanWindow(_taps, _inputSampleRate * _interp, cutoff, cutoff);
}
}
void start() {
if (running) {
return;
}
_workerThread = std::thread(_worker, this);
running = true;
}
void stop() {
if (!running) {
return;
}
_input->stopReader();
output.stopWriter();
_workerThread.join();
_input->clearReadStop();
output.clearWriteStop();
running = false;
}
void setInputSampleRate(float inputSampleRate, int blockSize = -1, float passBand = -1.0f, float transWidth = -1.0f) {
stop();
_inputSampleRate = inputSampleRate;
int _gcd = std::gcd((int)inputSampleRate, (int)_outputSampleRate);
_interp = _outputSampleRate / _gcd;
_decim = inputSampleRate / _gcd;
float cutoff = std::min<float>(_outputSampleRate / 2.0f, _inputSampleRate / 2.0f);
if (passBand > 0.0f && transWidth > 0.0f) {
dsp::BlackmanWindow(_taps, _inputSampleRate * _interp, passBand, transWidth);
}
else {
dsp::BlackmanWindow(_taps, _inputSampleRate * _interp, cutoff, cutoff);
}
if (blockSize > 0) {
_blockSize = blockSize;
}
outputBlockSize = (blockSize * _interp) / _decim;
output.setMaxLatency(outputBlockSize * 2);
start();
}
void setOutputSampleRate(float outputSampleRate, float passBand = -1.0f, float transWidth = -1.0f) {
stop();
_outputSampleRate = outputSampleRate;
int _gcd = std::gcd((int)_inputSampleRate, (int)outputSampleRate);
_interp = outputSampleRate / _gcd;
_decim = _inputSampleRate / _gcd;
outputBlockSize = (_blockSize * _interp) / _decim;
output.setMaxLatency(outputBlockSize * 2);
float cutoff = std::min<float>(_outputSampleRate / 2.0f, _inputSampleRate / 2.0f);
if (passBand > 0.0f && transWidth > 0.0f) {
dsp::BlackmanWindow(_taps, _inputSampleRate * _interp, passBand, transWidth);
}
else {
dsp::BlackmanWindow(_taps, _inputSampleRate * _interp, cutoff, cutoff);
}
start();
}
void setFilterParams(float passBand, float transWidth) {
stop();
dsp::BlackmanWindow(_taps, _inputSampleRate * _interp, passBand, transWidth);
start();
}
void setBlockSize(int blockSize) {
stop();
_blockSize = blockSize;
outputBlockSize = (_blockSize * _interp) / _decim;
output.setMaxLatency(outputBlockSize * 2);
start();
}
void setInput(stream<float>* input) {
if (running) {
return;
}
_input = input;
}
int getOutputBlockSize() {
return outputBlockSize;
}
stream<float> output;
private:
static void _worker(FloatFIRResampler* _this) {
float* inBuf = new float[_this->_blockSize];
float* outBuf = new float[_this->outputBlockSize];
2020-07-20 16:04:45 +02:00
int inCount = _this->_blockSize;
2020-07-19 15:59:44 +02:00
int outCount = _this->outputBlockSize;
2020-08-16 03:39:05 +02:00
int interp = _this->_interp;
int decim = _this->_decim;
float correction = interp;//(float)sqrt((float)interp);
2020-07-19 15:59:44 +02:00
int tapCount = _this->_taps.size();
2020-08-16 03:39:05 +02:00
float* taps = new float[tapCount];
for (int i = 0; i < tapCount; i++) {
taps[i] = _this->_taps[i] * correction;
}
2020-07-19 15:59:44 +02:00
float* delayBuf = new float[tapCount];
2020-07-20 16:04:45 +02:00
float* delayStart = &inBuf[std::max<int>(inCount - tapCount, 0)];
2020-07-19 15:59:44 +02:00
int delaySize = tapCount * sizeof(float);
2020-07-20 16:04:45 +02:00
float* delayBufEnd = &delayBuf[std::max<int>(tapCount - inCount, 0)];
2020-07-20 17:21:58 +02:00
int moveSize = std::min<int>(inCount, tapCount - inCount) * sizeof(float);
2020-07-20 16:04:45 +02:00
int inSize = inCount * sizeof(float);
2020-07-19 15:59:44 +02:00
2020-07-20 16:04:45 +02:00
int afterInterp = inCount * interp;
2020-07-19 15:59:44 +02:00
int outIndex = 0;
while (true) {
2020-07-20 16:04:45 +02:00
if (_this->_input->read(inBuf, inCount) < 0) { break; };
2020-08-16 03:39:05 +02:00
2020-07-19 15:59:44 +02:00
for (int i = 0; outIndex < outCount; i += decim) {
outBuf[outIndex] = 0;
2020-08-16 03:39:05 +02:00
for (int j = (i % interp); j < tapCount; j += interp) {
outBuf[outIndex] += GET_FROM_RIGHT_BUF(inBuf, delayBuf, tapCount, (i - j) / interp) * taps[j];
2020-07-19 15:59:44 +02:00
}
outIndex++;
}
2020-08-16 03:39:05 +02:00
2020-07-19 15:59:44 +02:00
outIndex = 0;
2020-07-20 16:04:45 +02:00
if (tapCount > inCount) {
memmove(delayBuf, delayBufEnd, moveSize);
memcpy(delayBufEnd, delayStart, inSize);
}
else {
memcpy(delayBuf, delayStart, delaySize);
}
2020-07-19 15:59:44 +02:00
if (_this->output.write(outBuf, _this->outputBlockSize) < 0) { break; };
}
delete[] inBuf;
delete[] outBuf;
delete[] delayBuf;
}
std::thread _workerThread;
stream<float>* _input;
std::vector<float> _taps;
int _interp;
int _decim;
int outputBlockSize;
float _outputSampleRate;
float _inputSampleRate;
int _blockSize;
bool running = false;
};
2020-08-20 18:29:23 +02:00
class FloatPolyphaseFIRResampler {
public:
FloatPolyphaseFIRResampler() {
}
void init(stream<float>* in, float inputSampleRate, float outputSampleRate, int blockSize, float passBand = -1.0f, float transWidth = -1.0f) {
_input = in;
_outputSampleRate = outputSampleRate;
_inputSampleRate = inputSampleRate;
int _gcd = std::gcd((int)inputSampleRate, (int)outputSampleRate);
_interp = outputSampleRate / _gcd;
_decim = inputSampleRate / _gcd;
_blockSize = blockSize;
outputBlockSize = (blockSize * _interp) / _decim;
output.init(outputBlockSize * 2);
float cutoff = std::min<float>(_outputSampleRate / 2.0f, _inputSampleRate / 2.0f);
if (passBand > 0.0f && transWidth > 0.0f) {
dsp::BlackmanWindow(_taps, _outputSampleRate, passBand, transWidth, _interp - 1);
}
else {
dsp::BlackmanWindow(_taps, _outputSampleRate, cutoff, cutoff, _interp - 1);
}
}
void start() {
if (running) {
return;
}
_workerThread = std::thread(_worker, this);
running = true;
}
void stop() {
if (!running) {
return;
}
_input->stopReader();
output.stopWriter();
_workerThread.join();
_input->clearReadStop();
output.clearWriteStop();
running = false;
}
void setInputSampleRate(float inputSampleRate, int blockSize = -1, float passBand = -1.0f, float transWidth = -1.0f) {
stop();
_inputSampleRate = inputSampleRate;
int _gcd = std::gcd((int)inputSampleRate, (int)_outputSampleRate);
_interp = _outputSampleRate / _gcd;
_decim = inputSampleRate / _gcd;
float cutoff = std::min<float>(_outputSampleRate / 2.0f, _inputSampleRate / 2.0f);
if (passBand > 0.0f && transWidth > 0.0f) {
dsp::BlackmanWindow(_taps, _outputSampleRate, passBand, transWidth, _interp - 1);
}
else {
dsp::BlackmanWindow(_taps,_outputSampleRate, cutoff, cutoff, _interp - 1);
}
if (blockSize > 0) {
_blockSize = blockSize;
}
outputBlockSize = (blockSize * _interp) / _decim;
output.setMaxLatency(outputBlockSize * 2);
start();
}
void setOutputSampleRate(float outputSampleRate, float passBand = -1.0f, float transWidth = -1.0f) {
stop();
_outputSampleRate = outputSampleRate;
int _gcd = std::gcd((int)_inputSampleRate, (int)outputSampleRate);
_interp = outputSampleRate / _gcd;
_decim = _inputSampleRate / _gcd;
outputBlockSize = (_blockSize * _interp) / _decim;
output.setMaxLatency(outputBlockSize * 2);
float cutoff = std::min<float>(_outputSampleRate / 2.0f, _inputSampleRate / 2.0f);
if (passBand > 0.0f && transWidth > 0.0f) {
dsp::BlackmanWindow(_taps, _outputSampleRate, passBand, transWidth, _interp - 1);
}
else {
dsp::BlackmanWindow(_taps, _outputSampleRate, cutoff, cutoff, _interp - 1);
}
start();
}
void setFilterParams(float passBand, float transWidth) {
stop();
dsp::BlackmanWindow(_taps, _outputSampleRate, passBand, transWidth, _interp - 1);
start();
}
void setBlockSize(int blockSize) {
stop();
_blockSize = blockSize;
outputBlockSize = (_blockSize * _interp) / _decim;
output.setMaxLatency(outputBlockSize * 2);
start();
}
void setInput(stream<float>* input) {
if (running) {
return;
}
_input = input;
}
int getOutputBlockSize() {
return outputBlockSize;
}
stream<float> output;
private:
static void _worker(FloatPolyphaseFIRResampler* _this) {
float* inBuf = new float[_this->_blockSize];
float* outBuf = new float[_this->outputBlockSize];
int inCount = _this->_blockSize;
int outCount = _this->outputBlockSize;
int interp = _this->_interp;
int decim = _this->_decim;
float correction = interp;//(float)sqrt((float)interp);
int tapCount = _this->_taps.size();
float* taps = new float[tapCount];
for (int i = 0; i < tapCount; i++) {
taps[i] = _this->_taps[i] * correction;
}
float* delayBuf = new float[tapCount];
float* delayStart = &inBuf[std::max<int>(inCount - tapCount, 0)];
int delaySize = tapCount * sizeof(float);
float* delayBufEnd = &delayBuf[std::max<int>(tapCount - inCount, 0)];
int moveSize = std::min<int>(inCount, tapCount - inCount) * sizeof(float);
int inSize = inCount * sizeof(float);
int afterInterp = inCount * interp;
int outIndex = 0;
tapCount -= interp - 1;
while (true) {
if (_this->_input->read(inBuf, inCount) < 0) { break; };
for (int i = 0; i < outCount; i++) {
outBuf[i] = 0;
int filterId = (i * decim) % interp;
int inputId = (i * decim) / interp;
for (int j = 0; j < tapCount; j++) {
outBuf[i] += GET_FROM_RIGHT_BUF(inBuf, delayBuf, tapCount, inputId - j) * taps[j + filterId];
}
}
if (tapCount > inCount) {
memmove(delayBuf, delayBufEnd, moveSize);
memcpy(delayBufEnd, delayStart, inSize);
}
else {
memcpy(delayBuf, delayStart, delaySize);
}
if (_this->output.write(outBuf, _this->outputBlockSize) < 0) { break; };
}
delete[] inBuf;
delete[] outBuf;
delete[] delayBuf;
}
std::thread _workerThread;
stream<float>* _input;
std::vector<float> _taps;
int _interp;
int _decim;
int outputBlockSize;
float _outputSampleRate;
float _inputSampleRate;
int _blockSize;
bool running = false;
};
2020-06-22 16:45:57 +02:00
};