#pragma once #include #include #include #include #include #include namespace dsp { template class Interpolator { public: Interpolator() { } Interpolator(stream* in, float interpolation, int blockSize) : output(blockSize * interpolation * 2) { _input = in; _interpolation = interpolation; _blockSize = blockSize; } void init(stream* in, float interpolation, int blockSize) { output.init(blockSize * 2 * interpolation); _input = in; _interpolation = interpolation; _blockSize = blockSize; } void start() { if (running) { return; } _workerThread = std::thread(_worker, this); running = true; } void stop() { if (!running) { return; } _input->stopReader(); output.stopWriter(); _workerThread.join(); _input->clearReadStop(); output.clearWriteStop(); running = false; } void setInterpolation(float interpolation) { if (running) { return; } _interpolation = interpolation; output.setMaxLatency(_blockSize * _interpolation * 2); } void setBlockSize(int blockSize) { if (running) { return; } _blockSize = blockSize; output.setMaxLatency(_blockSize * _interpolation * 2); } void setInput(stream* input) { if (running) { return; } _input = input; } stream output; private: static void _worker(Interpolator* _this) { T* inBuf = new T[_this->_blockSize]; T* outBuf = new T[_this->_blockSize * _this->_interpolation]; int outCount = _this->_blockSize * _this->_interpolation; int interp = _this->_interpolation; int count = 0; while (true) { if (_this->_input->read(inBuf, _this->_blockSize) < 0) { break; }; for (int i = 0; i < outCount; i++) { outBuf[i] = inBuf[(int)((float)i / _this->_interpolation)]; } // for (int i = 0; i < outCount; i += interp) { // outBuf[i] = inBuf[count]; // count++; // } count = 0; if (_this->output.write(outBuf, outCount) < 0) { break; }; } delete[] inBuf; delete[] outBuf; } stream* _input; int _blockSize; float _interpolation; std::thread _workerThread; bool running = false; }; class BlockDecimator { public: BlockDecimator() { } BlockDecimator(stream* in, int skip, int blockSize) : output(blockSize * 2) { _input = in; _skip = skip; _blockSize = blockSize; } void init(stream* in, int skip, int blockSize) { output.init(blockSize * 2); _input = in; _skip = skip; _blockSize = blockSize; } void start() { if (running) { return; } _workerThread = std::thread(_worker, this); running = true; } void stop() { if (!running) { return; } _input->stopReader(); output.stopWriter(); _workerThread.join(); _input->clearReadStop(); output.clearWriteStop(); running = false; } void setBlockSize(int blockSize) { if (running) { return; } _blockSize = blockSize; output.setMaxLatency(blockSize * 2); } void setSkip(int skip) { if (running) { return; } _skip = skip; } stream output; private: static void _worker(BlockDecimator* _this) { complex_t* buf = new complex_t[_this->_blockSize]; bool delay = _this->_skip < 0; int readCount = std::min(_this->_blockSize + _this->_skip, _this->_blockSize); int skip = std::max(_this->_skip, 0); int delaySize = (-_this->_skip) * sizeof(complex_t); complex_t* start = &buf[std::max(-_this->_skip, 0)]; complex_t* delayStart = &buf[_this->_blockSize + _this->_skip]; while (true) { if (delay) { memmove(buf, delayStart, delaySize); } if (_this->_input->readAndSkip(start, readCount, skip) < 0) { break; }; if (_this->output.write(buf, _this->_blockSize) < 0) { break; }; } delete[] buf; } stream* _input; int _blockSize; int _skip; std::thread _workerThread; bool running = false; }; class FIRResampler { public: FIRResampler() { } void init(stream* in, float inputSampleRate, float outputSampleRate, int blockSize, float passBand = -1.0f, float transWidth = -1.0f) { _input = in; _outputSampleRate = outputSampleRate; _inputSampleRate = inputSampleRate; int _gcd = std::gcd((int)inputSampleRate, (int)outputSampleRate); _interp = outputSampleRate / _gcd; _decim = inputSampleRate / _gcd; _blockSize = blockSize; outputBlockSize = (blockSize * _interp) / _decim; output.init(outputBlockSize * 2); float cutoff = std::min(_outputSampleRate / 2.0f, _inputSampleRate / 2.0f); if (passBand > 0.0f && transWidth > 0.0f) { dsp::BlackmanWindow(_taps, _inputSampleRate * _interp, passBand, transWidth); } else { dsp::BlackmanWindow(_taps, _inputSampleRate * _interp, cutoff, cutoff); } } void start() { if (running) { return; } _workerThread = std::thread(_worker, this); running = true; } void stop() { if (!running) { return; } _input->stopReader(); output.stopWriter(); _workerThread.join(); _input->clearReadStop(); output.clearWriteStop(); running = false; } void setInputSampleRate(float inputSampleRate, int blockSize = -1, float passBand = -1.0f, float transWidth = -1.0f) { stop(); _inputSampleRate = inputSampleRate; int _gcd = std::gcd((int)inputSampleRate, (int)_outputSampleRate); _interp = _outputSampleRate / _gcd; _decim = inputSampleRate / _gcd; float cutoff = std::min(_outputSampleRate / 2.0f, _inputSampleRate / 2.0f); if (passBand > 0.0f && transWidth > 0.0f) { dsp::BlackmanWindow(_taps, _inputSampleRate * _interp, passBand, transWidth); } else { dsp::BlackmanWindow(_taps, _inputSampleRate * _interp, cutoff, cutoff); } if (blockSize > 0) { _blockSize = blockSize; } outputBlockSize = (_blockSize * _interp) / _decim; output.setMaxLatency(outputBlockSize * 2); start(); } void setOutputSampleRate(float outputSampleRate, float passBand = -1.0f, float transWidth = -1.0f) { stop(); _outputSampleRate = outputSampleRate; int _gcd = std::gcd((int)_inputSampleRate, (int)outputSampleRate); _interp = outputSampleRate / _gcd; _decim = _inputSampleRate / _gcd; outputBlockSize = (_blockSize * _interp) / _decim; output.setMaxLatency(outputBlockSize * 2); float cutoff = std::min(_outputSampleRate / 2.0f, _inputSampleRate / 2.0f); if (passBand > 0.0f && transWidth > 0.0f) { dsp::BlackmanWindow(_taps, _inputSampleRate * _interp, passBand, transWidth); } else { dsp::BlackmanWindow(_taps, _inputSampleRate * _interp, cutoff, cutoff); } start(); } void setFilterParams(float passBand, float transWidth) { stop(); dsp::BlackmanWindow(_taps, _inputSampleRate * _interp, passBand, transWidth); start(); } void setBlockSize(int blockSize) { stop(); _blockSize = blockSize; outputBlockSize = (_blockSize * _interp) / _decim; output.setMaxLatency(outputBlockSize * 2); start(); } void setInput(stream* input) { if (running) { return; } _input = input; } int getOutputBlockSize() { return outputBlockSize; } stream output; private: static void _worker(FIRResampler* _this) { complex_t* inBuf = new complex_t[_this->_blockSize]; complex_t* outBuf = new complex_t[_this->outputBlockSize]; int inCount = _this->_blockSize; int outCount = _this->outputBlockSize; int interp = _this->_interp; int decim = _this->_decim; float correction = interp;//(float)sqrt((float)interp); int tapCount = _this->_taps.size(); float* taps = new float[tapCount]; for (int i = 0; i < tapCount; i++) { taps[i] = _this->_taps[i] * correction; } complex_t* delayBuf = new complex_t[tapCount]; complex_t* delayStart = &inBuf[std::max(inCount - tapCount, 0)]; int delaySize = tapCount * sizeof(complex_t); complex_t* delayBufEnd = &delayBuf[std::max(tapCount - inCount, 0)]; int moveSize = std::min(inCount, tapCount - inCount) * sizeof(complex_t); int inSize = inCount * sizeof(complex_t); int afterInterp = inCount * interp; int outIndex = 0; while (true) { if (_this->_input->read(inBuf, inCount) < 0) { break; }; for (int i = 0; outIndex < outCount; i += decim) { outBuf[outIndex].i = 0; outBuf[outIndex].q = 0; for (int j = i % interp; j < tapCount; j += interp) { outBuf[outIndex].i += GET_FROM_RIGHT_BUF(inBuf, delayBuf, tapCount, (i - j) / interp).i * taps[j]; outBuf[outIndex].q += GET_FROM_RIGHT_BUF(inBuf, delayBuf, tapCount, (i - j) / interp).q * taps[j]; } outIndex++; } outIndex = 0; if (tapCount > inCount) { memmove(delayBuf, delayBufEnd, moveSize); memcpy(delayBufEnd, delayStart, inSize); } else { memcpy(delayBuf, delayStart, delaySize); } if (_this->output.write(outBuf, _this->outputBlockSize) < 0) { break; }; } delete[] inBuf; delete[] outBuf; delete[] delayBuf; delete[] taps; } std::thread _workerThread; stream* _input; std::vector _taps; int _interp; int _decim; int outputBlockSize; float _outputSampleRate; float _inputSampleRate; int _blockSize; bool running = false; }; class FloatFIRResampler { public: FloatFIRResampler() { } void init(stream* in, float inputSampleRate, float outputSampleRate, int blockSize, float passBand = -1.0f, float transWidth = -1.0f) { _input = in; _outputSampleRate = outputSampleRate; _inputSampleRate = inputSampleRate; int _gcd = std::gcd((int)inputSampleRate, (int)outputSampleRate); _interp = outputSampleRate / _gcd; _decim = inputSampleRate / _gcd; _blockSize = blockSize; outputBlockSize = (blockSize * _interp) / _decim; output.init(outputBlockSize * 2); float cutoff = std::min(_outputSampleRate / 2.0f, _inputSampleRate / 2.0f); if (passBand > 0.0f && transWidth > 0.0f) { dsp::BlackmanWindow(_taps, _inputSampleRate * _interp, passBand, transWidth); } else { dsp::BlackmanWindow(_taps, _inputSampleRate * _interp, cutoff, cutoff); } } void start() { if (running) { return; } _workerThread = std::thread(_worker, this); running = true; } void stop() { if (!running) { return; } _input->stopReader(); output.stopWriter(); _workerThread.join(); _input->clearReadStop(); output.clearWriteStop(); running = false; } void setInputSampleRate(float inputSampleRate, int blockSize = -1, float passBand = -1.0f, float transWidth = -1.0f) { stop(); _inputSampleRate = inputSampleRate; int _gcd = std::gcd((int)inputSampleRate, (int)_outputSampleRate); _interp = _outputSampleRate / _gcd; _decim = inputSampleRate / _gcd; float cutoff = std::min(_outputSampleRate / 2.0f, _inputSampleRate / 2.0f); if (passBand > 0.0f && transWidth > 0.0f) { dsp::BlackmanWindow(_taps, _inputSampleRate * _interp, passBand, transWidth); } else { dsp::BlackmanWindow(_taps, _inputSampleRate * _interp, cutoff, cutoff); } if (blockSize > 0) { _blockSize = blockSize; } outputBlockSize = (blockSize * _interp) / _decim; output.setMaxLatency(outputBlockSize * 2); start(); } void setOutputSampleRate(float outputSampleRate, float passBand = -1.0f, float transWidth = -1.0f) { stop(); _outputSampleRate = outputSampleRate; int _gcd = std::gcd((int)_inputSampleRate, (int)outputSampleRate); _interp = outputSampleRate / _gcd; _decim = _inputSampleRate / _gcd; outputBlockSize = (_blockSize * _interp) / _decim; output.setMaxLatency(outputBlockSize * 2); float cutoff = std::min(_outputSampleRate / 2.0f, _inputSampleRate / 2.0f); if (passBand > 0.0f && transWidth > 0.0f) { dsp::BlackmanWindow(_taps, _inputSampleRate * _interp, passBand, transWidth); } else { dsp::BlackmanWindow(_taps, _inputSampleRate * _interp, cutoff, cutoff); } start(); } void setFilterParams(float passBand, float transWidth) { stop(); dsp::BlackmanWindow(_taps, _inputSampleRate * _interp, passBand, transWidth); start(); } void setBlockSize(int blockSize) { stop(); _blockSize = blockSize; outputBlockSize = (_blockSize * _interp) / _decim; output.setMaxLatency(outputBlockSize * 2); start(); } void setInput(stream* input) { if (running) { return; } _input = input; } int getOutputBlockSize() { return outputBlockSize; } stream output; private: static void _worker(FloatFIRResampler* _this) { float* inBuf = new float[_this->_blockSize]; float* outBuf = new float[_this->outputBlockSize]; int inCount = _this->_blockSize; int outCount = _this->outputBlockSize; int interp = _this->_interp; int decim = _this->_decim; float correction = interp;//(float)sqrt((float)interp); int tapCount = _this->_taps.size(); float* taps = new float[tapCount]; for (int i = 0; i < tapCount; i++) { taps[i] = _this->_taps[i] * correction; } float* delayBuf = new float[tapCount]; float* delayStart = &inBuf[std::max(inCount - tapCount, 0)]; int delaySize = tapCount * sizeof(float); float* delayBufEnd = &delayBuf[std::max(tapCount - inCount, 0)]; int moveSize = std::min(inCount, tapCount - inCount) * sizeof(float); int inSize = inCount * sizeof(float); int afterInterp = inCount * interp; int outIndex = 0; while (true) { if (_this->_input->read(inBuf, inCount) < 0) { break; }; for (int i = 0; outIndex < outCount; i += decim) { outBuf[outIndex] = 0; for (int j = (i % interp); j < tapCount; j += interp) { outBuf[outIndex] += GET_FROM_RIGHT_BUF(inBuf, delayBuf, tapCount, (i - j) / interp) * taps[j]; } outIndex++; } outIndex = 0; if (tapCount > inCount) { memmove(delayBuf, delayBufEnd, moveSize); memcpy(delayBufEnd, delayStart, inSize); } else { memcpy(delayBuf, delayStart, delaySize); } if (_this->output.write(outBuf, _this->outputBlockSize) < 0) { break; }; } delete[] inBuf; delete[] outBuf; delete[] delayBuf; } std::thread _workerThread; stream* _input; std::vector _taps; int _interp; int _decim; int outputBlockSize; float _outputSampleRate; float _inputSampleRate; int _blockSize; bool running = false; }; class FloatPolyphaseFIRResampler { public: FloatPolyphaseFIRResampler() { } void init(stream* in, float inputSampleRate, float outputSampleRate, int blockSize, float passBand = -1.0f, float transWidth = -1.0f) { _input = in; _outputSampleRate = outputSampleRate; _inputSampleRate = inputSampleRate; int _gcd = std::gcd((int)inputSampleRate, (int)outputSampleRate); _interp = outputSampleRate / _gcd; _decim = inputSampleRate / _gcd; _blockSize = blockSize; outputBlockSize = (blockSize * _interp) / _decim; output.init(outputBlockSize * 2); float cutoff = std::min(_outputSampleRate / 2.0f, _inputSampleRate / 2.0f); if (passBand > 0.0f && transWidth > 0.0f) { dsp::BlackmanWindow(_taps, _outputSampleRate, passBand, transWidth, _interp - 1); } else { dsp::BlackmanWindow(_taps, _outputSampleRate, cutoff, cutoff, _interp - 1); } } void start() { if (running) { return; } _workerThread = std::thread(_worker, this); running = true; } void stop() { if (!running) { return; } _input->stopReader(); output.stopWriter(); _workerThread.join(); _input->clearReadStop(); output.clearWriteStop(); running = false; } void setInputSampleRate(float inputSampleRate, int blockSize = -1, float passBand = -1.0f, float transWidth = -1.0f) { stop(); _inputSampleRate = inputSampleRate; int _gcd = std::gcd((int)inputSampleRate, (int)_outputSampleRate); _interp = _outputSampleRate / _gcd; _decim = inputSampleRate / _gcd; float cutoff = std::min(_outputSampleRate / 2.0f, _inputSampleRate / 2.0f); if (passBand > 0.0f && transWidth > 0.0f) { dsp::BlackmanWindow(_taps, _outputSampleRate, passBand, transWidth, _interp - 1); } else { dsp::BlackmanWindow(_taps,_outputSampleRate, cutoff, cutoff, _interp - 1); } if (blockSize > 0) { _blockSize = blockSize; } outputBlockSize = (blockSize * _interp) / _decim; output.setMaxLatency(outputBlockSize * 2); start(); } void setOutputSampleRate(float outputSampleRate, float passBand = -1.0f, float transWidth = -1.0f) { stop(); _outputSampleRate = outputSampleRate; int _gcd = std::gcd((int)_inputSampleRate, (int)outputSampleRate); _interp = outputSampleRate / _gcd; _decim = _inputSampleRate / _gcd; outputBlockSize = (_blockSize * _interp) / _decim; output.setMaxLatency(outputBlockSize * 2); float cutoff = std::min(_outputSampleRate / 2.0f, _inputSampleRate / 2.0f); if (passBand > 0.0f && transWidth > 0.0f) { dsp::BlackmanWindow(_taps, _outputSampleRate, passBand, transWidth, _interp - 1); } else { dsp::BlackmanWindow(_taps, _outputSampleRate, cutoff, cutoff, _interp - 1); } start(); } void setFilterParams(float passBand, float transWidth) { stop(); dsp::BlackmanWindow(_taps, _outputSampleRate, passBand, transWidth, _interp - 1); start(); } void setBlockSize(int blockSize) { stop(); _blockSize = blockSize; outputBlockSize = (_blockSize * _interp) / _decim; output.setMaxLatency(outputBlockSize * 2); start(); } void setInput(stream* input) { if (running) { return; } _input = input; } int getOutputBlockSize() { return outputBlockSize; } stream output; private: static void _worker(FloatPolyphaseFIRResampler* _this) { float* inBuf = new float[_this->_blockSize]; float* outBuf = new float[_this->outputBlockSize]; int inCount = _this->_blockSize; int outCount = _this->outputBlockSize; int interp = _this->_interp; int decim = _this->_decim; float correction = interp;//(float)sqrt((float)interp); int tapCount = _this->_taps.size(); float* taps = new float[tapCount]; for (int i = 0; i < tapCount; i++) { taps[i] = _this->_taps[i] * correction; } float* delayBuf = new float[tapCount]; float* delayStart = &inBuf[std::max(inCount - tapCount, 0)]; int delaySize = tapCount * sizeof(float); float* delayBufEnd = &delayBuf[std::max(tapCount - inCount, 0)]; int moveSize = std::min(inCount, tapCount - inCount) * sizeof(float); int inSize = inCount * sizeof(float); int afterInterp = inCount * interp; int outIndex = 0; tapCount -= interp - 1; while (true) { if (_this->_input->read(inBuf, inCount) < 0) { break; }; for (int i = 0; i < outCount; i++) { outBuf[i] = 0; int filterId = (i * decim) % interp; int inputId = (i * decim) / interp; for (int j = 0; j < tapCount; j++) { outBuf[i] += GET_FROM_RIGHT_BUF(inBuf, delayBuf, tapCount, inputId - j) * taps[j + filterId]; } } if (tapCount > inCount) { memmove(delayBuf, delayBufEnd, moveSize); memcpy(delayBufEnd, delayStart, inSize); } else { memcpy(delayBuf, delayStart, delaySize); } if (_this->output.write(outBuf, _this->outputBlockSize) < 0) { break; }; } delete[] inBuf; delete[] outBuf; delete[] delayBuf; } std::thread _workerThread; stream* _input; std::vector _taps; int _interp; int _decim; int outputBlockSize; float _outputSampleRate; float _inputSampleRate; int _blockSize; bool running = false; }; };