SDRPlusPlus/src/dsp/resampling.h

440 lines
12 KiB
C
Raw Normal View History

2020-06-22 16:45:57 +02:00
#pragma once
#include <thread>
#include <dsp/filter.h>
#include <dsp/stream.h>
#include <dsp/types.h>
#include <numeric>
2020-07-09 16:02:58 +02:00
#include <Windows.h>
2020-06-22 16:45:57 +02:00
namespace dsp {
template <class T>
class Interpolator {
public:
Interpolator() {
}
Interpolator(stream<T>* in, float interpolation, int blockSize) : output(blockSize * interpolation * 2) {
_input = in;
_interpolation = interpolation;
_blockSize = blockSize;
}
void init(stream<T>* in, float interpolation, int blockSize) {
2020-07-09 16:02:58 +02:00
output.init(blockSize * 2 * interpolation);
2020-06-22 16:45:57 +02:00
_input = in;
_interpolation = interpolation;
_blockSize = blockSize;
}
void start() {
if (running) {
return;
}
_workerThread = std::thread(_worker, this);
running = true;
}
void stop() {
if (!running) {
return;
}
_input->stopReader();
output.stopWriter();
_workerThread.join();
_input->clearReadStop();
output.clearWriteStop();
running = false;
}
void setInterpolation(float interpolation) {
if (running) {
return;
}
_interpolation = interpolation;
output.setMaxLatency(_blockSize * _interpolation * 2);
}
void setBlockSize(int blockSize) {
if (running) {
return;
}
_blockSize = blockSize;
output.setMaxLatency(_blockSize * _interpolation * 2);
}
void setInput(stream<T>* input) {
if (running) {
return;
}
_input = input;
}
stream<T> output;
private:
static void _worker(Interpolator<T>* _this) {
T* inBuf = new T[_this->_blockSize];
T* outBuf = new T[_this->_blockSize * _this->_interpolation];
int outCount = _this->_blockSize * _this->_interpolation;
while (true) {
if (_this->_input->read(inBuf, _this->_blockSize) < 0) { break; };
for (int i = 0; i < outCount; i++) {
outBuf[i] = inBuf[(int)((float)i / _this->_interpolation)];
}
if (_this->output.write(outBuf, outCount) < 0) { break; };
}
delete[] inBuf;
delete[] outBuf;
}
stream<T>* _input;
int _blockSize;
float _interpolation;
std::thread _workerThread;
bool running = false;
};
class BlockDecimator {
public:
BlockDecimator() {
}
BlockDecimator(stream<complex_t>* in, int skip, int blockSize) : output(blockSize * 2) {
_input = in;
_skip = skip;
_blockSize = blockSize;
}
void init(stream<complex_t>* in, int skip, int blockSize) {
output.init(blockSize * 2);
_input = in;
_skip = skip;
_blockSize = blockSize;
}
void start() {
if (running) {
return;
}
_workerThread = std::thread(_worker, this);
}
void stop() {
if (!running) {
return;
}
_input->stopReader();
output.stopWriter();
_workerThread.join();
_input->clearReadStop();
output.clearWriteStop();
running = false;
}
void setBlockSize(int blockSize) {
if (running) {
return;
}
_blockSize = blockSize;
output.setMaxLatency(blockSize * 2);
}
void setSkip(int skip) {
if (running) {
return;
}
_skip = skip;
}
stream<complex_t> output;
private:
static void _worker(BlockDecimator* _this) {
complex_t* buf = new complex_t[_this->_blockSize];
while (true) {
_this->_input->readAndSkip(buf, _this->_blockSize, _this->_skip);
_this->output.write(buf, _this->_blockSize);
}
}
stream<complex_t>* _input;
int _blockSize;
int _skip;
std::thread _workerThread;
bool running = false;
};
class Resampler {
public:
Resampler() {
}
void init(stream<complex_t>* in, float inputSampleRate, float outputSampleRate, float bandWidth, int blockSize) {
_input = in;
_outputSampleRate = outputSampleRate;
_inputSampleRate = inputSampleRate;
int _gcd = std::gcd((int)inputSampleRate, (int)outputSampleRate);
_interp = outputSampleRate / _gcd;
_decim = inputSampleRate / _gcd;
_blockSize = blockSize;
output = &decim.output;
dsp::BlackmanWindow(_taps, inputSampleRate * _interp, outputSampleRate / 2.0f, outputSampleRate / 2.0f);
interp.init(in, _interp, blockSize);
if (_interp == 1) {
decim.init(in, _taps, blockSize, _decim);
}
else {
decim.init(&interp.output, _taps, blockSize * _interp, _decim);
}
}
void start() {
2020-07-09 16:02:58 +02:00
if (running) {
return;
}
2020-06-22 16:45:57 +02:00
if (_interp != 1) {
interp.start();
}
decim.start();
running = true;
}
void stop() {
2020-07-09 16:02:58 +02:00
if (!running) {
return;
}
2020-06-22 16:45:57 +02:00
interp.stop();
decim.stop();
running = false;
}
void setInputSampleRate(float inputSampleRate, int blockSize = -1) {
stop();
_inputSampleRate = inputSampleRate;
int _gcd = std::gcd((int)inputSampleRate, (int)_outputSampleRate);
_interp = _outputSampleRate / _gcd;
_decim = inputSampleRate / _gcd;
dsp::BlackmanWindow(_taps, inputSampleRate * _interp, _outputSampleRate / 2.0f, _outputSampleRate / 2.0f);
decim.setTaps(_taps);
interp.setInterpolation(_interp);
decim.setDecimation(_decim);
if (blockSize > 0) {
_blockSize = blockSize;
interp.setBlockSize(_blockSize);
}
decim.setBlockSize(_blockSize * _interp);
if (_interp == 1) {
decim.setInput(_input);
}
else {
decim.setInput(&interp.output);
interp.start();
}
start();
}
void setOutputSampleRate(float outputSampleRate) {
stop();
_outputSampleRate = outputSampleRate;
int _gcd = std::gcd((int)_inputSampleRate, (int)outputSampleRate);
_interp = outputSampleRate / _gcd;
_decim = _inputSampleRate / _gcd;
dsp::BlackmanWindow(_taps, _inputSampleRate * _interp, outputSampleRate / 2.0f, outputSampleRate / 2.0f);
decim.setTaps(_taps);
interp.setInterpolation(_interp);
decim.setDecimation(_decim);
decim.setBlockSize(_blockSize * _interp);
if (_interp == 1) {
decim.setInput(_input);
}
else {
decim.setInput(&interp.output);
}
start();
}
void setBlockSize(int blockSize) {
stop();
_blockSize = blockSize;
interp.setBlockSize(_blockSize);
decim.setBlockSize(_blockSize * _interp);
start();
}
void setInput(stream<complex_t>* input) {
if (running) {
return;
}
_input = input;
interp.setInput(_input);
if (_interp == 1) {
decim.setInput(_input);
}
}
stream<complex_t>* output;
private:
Interpolator<complex_t> interp;
DecimatingFIRFilter decim;
stream<complex_t>* _input;
std::vector<float> _taps;
int _interp;
int _decim;
float _outputSampleRate;
float _inputSampleRate;
float _blockSize;
bool running = false;
};
class FloatResampler {
public:
FloatResampler() {
}
void init(stream<float>* in, float inputSampleRate, float outputSampleRate, float bandWidth, int blockSize) {
_input = in;
_outputSampleRate = outputSampleRate;
_inputSampleRate = inputSampleRate;
int _gcd = std::gcd((int)inputSampleRate, (int)outputSampleRate);
_interp = outputSampleRate / _gcd;
_decim = inputSampleRate / _gcd;
_blockSize = blockSize;
output = &decim.output;
dsp::BlackmanWindow(_taps, inputSampleRate * _interp, outputSampleRate / 2.0f, outputSampleRate / 2.0f);
interp.init(in, _interp, blockSize);
if (_interp == 1) {
decim.init(in, _taps, blockSize, _decim);
}
else {
decim.init(&interp.output, _taps, blockSize * _interp, _decim);
}
}
void start() {
2020-07-09 16:02:58 +02:00
if (running) {
return;
}
2020-06-22 16:45:57 +02:00
if (_interp != 1) {
interp.start();
}
decim.start();
running = true;
}
void stop() {
2020-07-09 16:02:58 +02:00
if (!running) {
return;
}
2020-06-22 16:45:57 +02:00
interp.stop();
2020-07-09 16:02:58 +02:00
//decim.stop();
Sleep(200);
2020-06-22 16:45:57 +02:00
running = false;
}
void setInputSampleRate(float inputSampleRate, int blockSize = -1) {
stop();
_inputSampleRate = inputSampleRate;
int _gcd = std::gcd((int)inputSampleRate, (int)_outputSampleRate);
_interp = _outputSampleRate / _gcd;
_decim = inputSampleRate / _gcd;
dsp::BlackmanWindow(_taps, inputSampleRate * _interp, _outputSampleRate / 2.0f, _outputSampleRate / 2.0f);
decim.setTaps(_taps);
interp.setInterpolation(_interp);
decim.setDecimation(_decim);
if (blockSize > 0) {
_blockSize = blockSize;
interp.setBlockSize(_blockSize);
}
decim.setBlockSize(_blockSize * _interp);
if (_interp == 1) {
decim.setInput(_input);
}
else {
decim.setInput(&interp.output);
}
start();
}
void setOutputSampleRate(float outputSampleRate) {
stop();
_outputSampleRate = outputSampleRate;
int _gcd = std::gcd((int)_inputSampleRate, (int)outputSampleRate);
_interp = outputSampleRate / _gcd;
_decim = _inputSampleRate / _gcd;
dsp::BlackmanWindow(_taps, _inputSampleRate * _interp, outputSampleRate / 2.0f, outputSampleRate / 2.0f);
decim.setTaps(_taps);
interp.setInterpolation(_interp);
decim.setDecimation(_decim);
decim.setBlockSize(_blockSize * _interp);
if (_interp == 1) {
decim.setInput(_input);
}
else {
decim.setInput(&interp.output);
}
start();
}
void setBlockSize(int blockSize) {
stop();
_blockSize = blockSize;
interp.setBlockSize(_blockSize);
decim.setBlockSize(_blockSize * _interp);
start();
}
void setInput(stream<float>* input) {
if (running) {
return;
}
_input = input;
interp.setInput(_input);
if (_interp == 1) {
decim.setInput(_input);
}
}
stream<float>* output;
private:
Interpolator<float> interp;
FloatDecimatingFIRFilter decim;
stream<float>* _input;
std::vector<float> _taps;
int _interp;
int _decim;
float _outputSampleRate;
float _inputSampleRate;
float _blockSize;
bool running = false;
};
};