#pragma once #include #include #include #include #include #include namespace dsp { template class Interpolator { public: Interpolator() { } Interpolator(stream* in, float interpolation, int blockSize) : output(blockSize * interpolation * 2) { _input = in; _interpolation = interpolation; _blockSize = blockSize; } void init(stream* in, float interpolation, int blockSize) { output.init(blockSize * 2 * interpolation); _input = in; _interpolation = interpolation; _blockSize = blockSize; } void start() { if (running) { return; } _workerThread = std::thread(_worker, this); running = true; } void stop() { if (!running) { return; } _input->stopReader(); output.stopWriter(); _workerThread.join(); _input->clearReadStop(); output.clearWriteStop(); running = false; } void setInterpolation(float interpolation) { if (running) { return; } _interpolation = interpolation; output.setMaxLatency(_blockSize * _interpolation * 2); } void setBlockSize(int blockSize) { if (running) { return; } _blockSize = blockSize; output.setMaxLatency(_blockSize * _interpolation * 2); } void setInput(stream* input) { if (running) { return; } _input = input; } stream output; private: static void _worker(Interpolator* _this) { T* inBuf = new T[_this->_blockSize]; T* outBuf = new T[_this->_blockSize * _this->_interpolation]; int outCount = _this->_blockSize * _this->_interpolation; while (true) { if (_this->_input->read(inBuf, _this->_blockSize) < 0) { break; }; for (int i = 0; i < outCount; i++) { outBuf[i] = inBuf[(int)((float)i / _this->_interpolation)]; } if (_this->output.write(outBuf, outCount) < 0) { break; }; } delete[] inBuf; delete[] outBuf; } stream* _input; int _blockSize; float _interpolation; std::thread _workerThread; bool running = false; }; class BlockDecimator { public: BlockDecimator() { } BlockDecimator(stream* in, int skip, int blockSize) : output(blockSize * 2) { _input = in; _skip = skip; _blockSize = blockSize; } void init(stream* in, int skip, int blockSize) { output.init(blockSize * 2); _input = in; _skip = skip; _blockSize = blockSize; } void start() { if (running) { return; } _workerThread = std::thread(_worker, this); } void stop() { if (!running) { return; } _input->stopReader(); output.stopWriter(); _workerThread.join(); _input->clearReadStop(); output.clearWriteStop(); running = false; } void setBlockSize(int blockSize) { if (running) { return; } _blockSize = blockSize; output.setMaxLatency(blockSize * 2); } void setSkip(int skip) { if (running) { return; } _skip = skip; } stream output; private: static void _worker(BlockDecimator* _this) { complex_t* buf = new complex_t[_this->_blockSize]; while (true) { _this->_input->readAndSkip(buf, _this->_blockSize, _this->_skip); _this->output.write(buf, _this->_blockSize); } } stream* _input; int _blockSize; int _skip; std::thread _workerThread; bool running = false; }; class Resampler { public: Resampler() { } void init(stream* in, float inputSampleRate, float outputSampleRate, float bandWidth, int blockSize) { _input = in; _outputSampleRate = outputSampleRate; _inputSampleRate = inputSampleRate; int _gcd = std::gcd((int)inputSampleRate, (int)outputSampleRate); _interp = outputSampleRate / _gcd; _decim = inputSampleRate / _gcd; _blockSize = blockSize; output = &decim.output; dsp::BlackmanWindow(_taps, inputSampleRate * _interp, outputSampleRate / 2.0f, outputSampleRate / 2.0f); interp.init(in, _interp, blockSize); if (_interp == 1) { decim.init(in, _taps, blockSize, _decim); } else { decim.init(&interp.output, _taps, blockSize * _interp, _decim); } } void start() { if (running) { return; } if (_interp != 1) { interp.start(); } decim.start(); running = true; } void stop() { if (!running) { return; } interp.stop(); decim.stop(); running = false; } void setInputSampleRate(float inputSampleRate, int blockSize = -1) { stop(); _inputSampleRate = inputSampleRate; int _gcd = std::gcd((int)inputSampleRate, (int)_outputSampleRate); _interp = _outputSampleRate / _gcd; _decim = inputSampleRate / _gcd; dsp::BlackmanWindow(_taps, inputSampleRate * _interp, _outputSampleRate / 2.0f, _outputSampleRate / 2.0f); decim.setTaps(_taps); interp.setInterpolation(_interp); decim.setDecimation(_decim); if (blockSize > 0) { _blockSize = blockSize; interp.setBlockSize(_blockSize); } decim.setBlockSize(_blockSize * _interp); if (_interp == 1) { decim.setInput(_input); } else { decim.setInput(&interp.output); interp.start(); } start(); } void setOutputSampleRate(float outputSampleRate) { stop(); _outputSampleRate = outputSampleRate; int _gcd = std::gcd((int)_inputSampleRate, (int)outputSampleRate); _interp = outputSampleRate / _gcd; _decim = _inputSampleRate / _gcd; dsp::BlackmanWindow(_taps, _inputSampleRate * _interp, outputSampleRate / 2.0f, outputSampleRate / 2.0f); decim.setTaps(_taps); interp.setInterpolation(_interp); decim.setDecimation(_decim); decim.setBlockSize(_blockSize * _interp); if (_interp == 1) { decim.setInput(_input); } else { decim.setInput(&interp.output); } start(); } void setBlockSize(int blockSize) { stop(); _blockSize = blockSize; interp.setBlockSize(_blockSize); decim.setBlockSize(_blockSize * _interp); start(); } void setInput(stream* input) { if (running) { return; } _input = input; interp.setInput(_input); if (_interp == 1) { decim.setInput(_input); } } stream* output; private: Interpolator interp; DecimatingFIRFilter decim; stream* _input; std::vector _taps; int _interp; int _decim; float _outputSampleRate; float _inputSampleRate; float _blockSize; bool running = false; }; class FloatResampler { public: FloatResampler() { } void init(stream* in, float inputSampleRate, float outputSampleRate, float bandWidth, int blockSize) { _input = in; _outputSampleRate = outputSampleRate; _inputSampleRate = inputSampleRate; int _gcd = std::gcd((int)inputSampleRate, (int)outputSampleRate); _interp = outputSampleRate / _gcd; _decim = inputSampleRate / _gcd; _blockSize = blockSize; output = &decim.output; dsp::BlackmanWindow(_taps, inputSampleRate * _interp, outputSampleRate / 2.0f, outputSampleRate / 2.0f); interp.init(in, _interp, blockSize); if (_interp == 1) { decim.init(in, _taps, blockSize, _decim); } else { decim.init(&interp.output, _taps, blockSize * _interp, _decim); } } void start() { if (running) { return; } if (_interp != 1) { interp.start(); } decim.start(); running = true; } void stop() { if (!running) { return; } interp.stop(); //decim.stop(); Sleep(200); running = false; } void setInputSampleRate(float inputSampleRate, int blockSize = -1) { stop(); _inputSampleRate = inputSampleRate; int _gcd = std::gcd((int)inputSampleRate, (int)_outputSampleRate); _interp = _outputSampleRate / _gcd; _decim = inputSampleRate / _gcd; dsp::BlackmanWindow(_taps, inputSampleRate * _interp, _outputSampleRate / 2.0f, _outputSampleRate / 2.0f); decim.setTaps(_taps); interp.setInterpolation(_interp); decim.setDecimation(_decim); if (blockSize > 0) { _blockSize = blockSize; interp.setBlockSize(_blockSize); } decim.setBlockSize(_blockSize * _interp); if (_interp == 1) { decim.setInput(_input); } else { decim.setInput(&interp.output); } start(); } void setOutputSampleRate(float outputSampleRate) { stop(); _outputSampleRate = outputSampleRate; int _gcd = std::gcd((int)_inputSampleRate, (int)outputSampleRate); _interp = outputSampleRate / _gcd; _decim = _inputSampleRate / _gcd; dsp::BlackmanWindow(_taps, _inputSampleRate * _interp, outputSampleRate / 2.0f, outputSampleRate / 2.0f); decim.setTaps(_taps); interp.setInterpolation(_interp); decim.setDecimation(_decim); decim.setBlockSize(_blockSize * _interp); if (_interp == 1) { decim.setInput(_input); } else { decim.setInput(&interp.output); } start(); } void setBlockSize(int blockSize) { stop(); _blockSize = blockSize; interp.setBlockSize(_blockSize); decim.setBlockSize(_blockSize * _interp); start(); } void setInput(stream* input) { if (running) { return; } _input = input; interp.setInput(_input); if (_interp == 1) { decim.setInput(_input); } } stream* output; private: Interpolator interp; FloatDecimatingFIRFilter decim; stream* _input; std::vector _taps; int _interp; int _decim; float _outputSampleRate; float _inputSampleRate; float _blockSize; bool running = false; }; };