Beginning of code for the RSPduo + bugfix for the hackrf

This commit is contained in:
Ryzerth 2021-04-10 03:06:51 +02:00
parent aeab33127d
commit 26e623bec4
11 changed files with 796 additions and 43 deletions

View File

@ -12,10 +12,11 @@ option(OPT_BUILD_BLADERF_SOURCE "Build BladeRF Source Module (Depedencies: libbl
option(OPT_BUILD_SDRPLAY_SOURCE "Build SDRplay Source Module (Depedencies: libsdrplay)" OFF) option(OPT_BUILD_SDRPLAY_SOURCE "Build SDRplay Source Module (Depedencies: libsdrplay)" OFF)
option(OPT_BUILD_PLUTOSDR_SOURCE "Build PlutoSDR Source Module (Depedencies: libiio, libad9361)" ON) option(OPT_BUILD_PLUTOSDR_SOURCE "Build PlutoSDR Source Module (Depedencies: libiio, libad9361)" ON)
option(OPT_BUILD_HACKRF_SOURCE "Build HackRF Source Module (Depedencies: libhackrf)" OFF) option(OPT_BUILD_HACKRF_SOURCE "Build HackRF Source Module (Depedencies: libhackrf)" OFF)
option(OPT_BUILD_RTL_SDR_SOURCE "Build HackRF Source Module (Depedencies: libhackrf)" ON) option(OPT_BUILD_RTL_SDR_SOURCE "Build RTL-SDR Source Module (Depedencies: librtlsdr)" ON)
option(OPT_BUILD_AUDIO_SINK "Build Audio Sink Module (Depedencies: rtaudio)" ON) option(OPT_BUILD_AUDIO_SINK "Build Audio Sink Module (Depedencies: rtaudio)" ON)
option(OPT_BUILD_FALCON9_DECODER "Build the falcon9 live decoder" OFF) option(OPT_BUILD_FALCON9_DECODER "Build the falcon9 live decoder (Dependencies: ffplay)" OFF)
option(OPT_BUILD_METEOR_DEMODULATOR "Build the meteor demodulator module" ON) option(OPT_BUILD_METEOR_DEMODULATOR "Build the meteor demodulator module (no dependencies required)" ON)
option(OPT_BUILD_WEATHER_SAT_DECODER "Build the HRPT decoder module (no dependencies required)" ON)
# Core of SDR++ # Core of SDR++
add_subdirectory("core") add_subdirectory("core")
@ -77,6 +78,10 @@ if (OPT_BUILD_METEOR_DEMODULATOR)
add_subdirectory("meteor_demodulator") add_subdirectory("meteor_demodulator")
endif (OPT_BUILD_METEOR_DEMODULATOR) endif (OPT_BUILD_METEOR_DEMODULATOR)
if (OPT_BUILD_WEATHER_SAT_DECODER)
add_subdirectory("weather_sat_decoder")
endif (OPT_BUILD_WEATHER_SAT_DECODER)
if (MSVC) if (MSVC)
set(CMAKE_CXX_FLAGS "-O2 /std:c++17 /EHsc") set(CMAKE_CXX_FLAGS "-O2 /std:c++17 /EHsc")
else() else()

View File

@ -27,6 +27,8 @@ public:
AirspySourceModule(std::string name) { AirspySourceModule(std::string name) {
this->name = name; this->name = name;
airspy_init();
sampleRate = 10000000.0; sampleRate = 10000000.0;
handler.ctx = this; handler.ctx = this;
@ -54,7 +56,7 @@ public:
} }
~AirspySourceModule() { ~AirspySourceModule() {
airspy_exit();
} }
void enable() { void enable() {

View File

@ -84,6 +84,8 @@ namespace dsp {
omegaMax = _omega + (_omega * _omegaRelLimit); omegaMax = _omega + (_omega * _omegaRelLimit);
_dynOmega = _omega; _dynOmega = _omega;
memset(delay, 0, 1024 * sizeof(T));
generic_block<MMClockRecovery<T>>::registerInput(_in); generic_block<MMClockRecovery<T>>::registerInput(_in);
generic_block<MMClockRecovery<T>>::registerOutput(&out); generic_block<MMClockRecovery<T>>::registerOutput(&out);
} }

View File

@ -35,7 +35,6 @@ namespace dsp {
count = _in->read(); count = _in->read();
if (count < 0) { return -1; } if (count < 0) { return -1; }
// Copy data into work buffer // Copy data into work buffer
memcpy(bufferStart, _in->readBuf, count - 1); memcpy(bufferStart, _in->readBuf, count - 1);
@ -61,6 +60,7 @@ namespace dsp {
// Else, check for a header // Else, check for a header
else if (memcmp(buffer + i, _syncword, _syncLen) == 0) { else if (memcmp(buffer + i, _syncword, _syncLen) == 0) {
bitsRead = 0; bitsRead = 0;
//printf("Frame found!\n");
badFrameCount = 0; badFrameCount = 0;
continue; continue;
} }
@ -70,6 +70,7 @@ namespace dsp {
// try to save // try to save
if (badFrameCount < 5) { if (badFrameCount < 5) {
badFrameCount++; badFrameCount++;
//printf("Frame found!\n");
bitsRead = 0; bitsRead = 0;
continue; continue;
} }
@ -111,4 +112,252 @@ namespace dsp {
stream<uint8_t>* _in; stream<uint8_t>* _in;
}; };
inline int MachesterHammingDistance(float* data, uint8_t* syncBits, int n) {
int dist = 0;
for (int i = 0; i < n; i++) {
if ((data[(2*i) + 1] > data[2*i]) != syncBits[i]) { dist++; }
}
return dist;
}
inline int HammingDistance(uint8_t* data, uint8_t* syncBits, int n) {
int dist = 0;
for (int i = 0; i < n; i++) {
if (data[i] != syncBits[i]) { dist++; }
}
return dist;
}
class ManchesterDeframer : public generic_block<ManchesterDeframer> {
public:
ManchesterDeframer() {}
ManchesterDeframer(stream<float>* in, int frameLen, uint8_t* syncWord, int syncLen) { init(in, frameLen, syncWord, syncLen); }
void init(stream<float>* in, int frameLen, uint8_t* syncWord, int syncLen) {
_in = in;
_frameLen = frameLen;
_syncword = new uint8_t[syncLen];
_syncLen = syncLen;
memcpy(_syncword, syncWord, syncLen);
buffer = new float[STREAM_BUFFER_SIZE + (syncLen * 2)];
memset(buffer, 0, syncLen * 2 * sizeof(float));
bufferStart = &buffer[syncLen * 2];
generic_block<ManchesterDeframer>::registerInput(_in);
generic_block<ManchesterDeframer>::registerOutput(&out);
}
int run() {
count = _in->read();
if (count < 0) { return -1; }
int readable;
// Copy data into work buffer
memcpy(bufferStart, _in->readBuf, (count - 1) * sizeof(float));
// Iterate through all symbols
for (int i = 0; i < count;) {
// If already in the process of reading bits
if (bitsRead >= 0) {
readable = std::min<int>(count - i, _frameLen - bitsRead);
memcpy(&out.writeBuf[bitsRead], &buffer[i], readable * sizeof(float));
bitsRead += readable;
i += readable;
if (bitsRead >= _frameLen) {
out.swap(_frameLen);
bitsRead = -1;
}
continue;
}
// Else, check for a header
if (MachesterHammingDistance(&buffer[i], _syncword, _syncLen) <= 2) {
bitsRead = 0;
continue;
}
i++;
}
// Keep last _syncLen symbols
memcpy(buffer, &_in->readBuf[count - (_syncLen * 2)], _syncLen * 2 * sizeof(float));
_in->flush();
return count;
}
stream<float> out;
private:
float* buffer;
float* bufferStart;
uint8_t* _syncword;
int count;
int _frameLen;
int _syncLen;
int bitsRead = -1;
stream<float>* _in;
};
class SymbolDeframer : public generic_block<SymbolDeframer> {
public:
SymbolDeframer() {}
SymbolDeframer(stream<uint8_t>* in, int frameLen, uint8_t* syncWord, int syncLen) { init(in, frameLen, syncWord, syncLen); }
void init(stream<uint8_t>* in, int frameLen, uint8_t* syncWord, int syncLen) {
_in = in;
_frameLen = frameLen;
_syncword = new uint8_t[syncLen];
_syncLen = syncLen;
memcpy(_syncword, syncWord, syncLen);
buffer = new uint8_t[STREAM_BUFFER_SIZE + syncLen];
memset(buffer, 0, syncLen);
bufferStart = &buffer[syncLen];
generic_block<SymbolDeframer>::registerInput(_in);
generic_block<SymbolDeframer>::registerOutput(&out);
}
int run() {
count = _in->read();
if (count < 0) { return -1; }
int readable;
// Copy data into work buffer
memcpy(bufferStart, _in->readBuf, count - 1);
// Iterate through all symbols
for (int i = 0; i < count;) {
// If already in the process of reading bits
if (bitsRead >= 0) {
readable = std::min<int>(count - i, _frameLen - bitsRead);
memcpy(&out.writeBuf[bitsRead], &buffer[i], readable);
bitsRead += readable;
i += readable;
if (bitsRead >= _frameLen) {
out.swap(_frameLen);
bitsRead = -1;
}
continue;
}
// Else, check for a header
if (HammingDistance(&buffer[i], _syncword, _syncLen) <= 2) {
bitsRead = 0;
continue;
}
i++;
}
// Keep last _syncLen symbols
memcpy(buffer, &_in->readBuf[count - _syncLen], _syncLen);
_in->flush();
return count;
}
stream<uint8_t> out;
private:
uint8_t* buffer;
uint8_t* bufferStart;
uint8_t* _syncword;
int count;
int _frameLen;
int _syncLen;
int bitsRead = -1;
stream<uint8_t>* _in;
};
class ManchesterDecoder : public generic_block<ManchesterDecoder> {
public:
ManchesterDecoder() {}
ManchesterDecoder(stream<float>* in, bool inverted) { init(in, inverted); }
void init(stream<float>* in, bool inverted) {
_in = in;
_inverted = inverted;
generic_block<ManchesterDecoder>::registerInput(_in);
generic_block<ManchesterDecoder>::registerOutput(&out);
}
int run() {
int count = _in->read();
if (count < 0) { return -1; }
if (_inverted) {
for (int i = 0; i < count; i += 2) {
out.writeBuf[i/2] = (_in->readBuf[i + 1] < _in->readBuf[i]);
}
}
else {
for (int i = 0; i < count; i += 2) {
out.writeBuf[i/2] = (_in->readBuf[i + 1] > _in->readBuf[i]);
}
}
_in->flush();
out.swap(count / 2);
return count;
}
stream<uint8_t> out;
private:
stream<float>* _in;
bool _inverted;
};
class BitPacker : public generic_block<BitPacker> {
public:
BitPacker() {}
BitPacker(stream<uint8_t>* in) { init(in); }
void init(stream<uint8_t>* in) {
_in = in;
generic_block<BitPacker>::registerInput(_in);
generic_block<BitPacker>::registerOutput(&out);
}
int run() {
int count = _in->read();
if (count < 0) { return -1; }
for (int i = 0; i < count; i++) {
if ((i % 8) == 0) { out.writeBuf[i / 8] = 0; }
out.writeBuf[i / 8] |= (_in->readBuf[i] & 1) << (7 - (i % 8));
}
_in->flush();
out.swap((count / 8) + (((count % 8) == 0) ? 0 : 1));
return count;
}
stream<uint8_t> out;
private:
stream<uint8_t>* _in;
};
} }

View File

@ -500,7 +500,7 @@ namespace dsp {
public: public:
MSKDemod() {} MSKDemod() {}
MSKDemod(stream<complex_t>* input, float sampleRate, float deviation, float baudRate, float omegaGain = (0.01*0.01) / 4, float muGain = 0.01f, float omegaRelLimit = 0.005f) { MSKDemod(stream<complex_t>* input, float sampleRate, float deviation, float baudRate, float omegaGain = (0.01*0.01) / 4, float muGain = 0.01f, float omegaRelLimit = 0.005f) {
init(input, sampleRate, deviation, baudRate); init(input, sampleRate, deviation, baudRate, omegaGain, muGain, omegaRelLimit);
} }
void init(stream<complex_t>* input, float sampleRate, float deviation, float baudRate, float omegaGain = (0.01*0.01) / 4, float muGain = 0.01f, float omegaRelLimit = 0.005f) { void init(stream<complex_t>* input, float sampleRate, float deviation, float baudRate, float omegaGain = (0.01*0.01) / 4, float muGain = 0.01f, float omegaRelLimit = 0.005f) {
@ -567,11 +567,11 @@ namespace dsp {
class PSKDemod : public generic_hier_block<PSKDemod<ORDER, OFFSET>> { class PSKDemod : public generic_hier_block<PSKDemod<ORDER, OFFSET>> {
public: public:
PSKDemod() {} PSKDemod() {}
PSKDemod(stream<complex_t>* input, float sampleRate, float baudRate, int RRCTapCount = 32, float RRCAlpha = 0.32f, float agcRate = 10e-4, float costasLoopBw = 0.004f, float omegaGain = (0.01*0.01) / 4, float muGain = 0.01f, float omegaRelLimit = 0.005f) { PSKDemod(stream<complex_t>* input, float sampleRate, float baudRate, int RRCTapCount = 31, float RRCAlpha = 0.32f, float agcRate = 10e-4, float costasLoopBw = 0.004f, float omegaGain = (0.01*0.01) / 4, float muGain = 0.01f, float omegaRelLimit = 0.005f) {
init(input, sampleRate, baudRate, RRCTapCount, RRCAlpha, agcRate, costasLoopBw, omegaGain, muGain, omegaRelLimit); init(input, sampleRate, baudRate, RRCTapCount, RRCAlpha, agcRate, costasLoopBw, omegaGain, muGain, omegaRelLimit);
} }
void init(stream<complex_t>* input, float sampleRate, float baudRate, int RRCTapCount = 32, float RRCAlpha = 0.32f, float agcRate = 10e-4, float costasLoopBw = 0.004f, float omegaGain = (0.01*0.01) / 4, float muGain = 0.01f, float omegaRelLimit = 0.005f) { void init(stream<complex_t>* input, float sampleRate, float baudRate, int RRCTapCount = 31, float RRCAlpha = 0.32f, float agcRate = 10e-4, float costasLoopBw = 0.004f, float omegaGain = (0.01*0.01) / 4, float muGain = 0.01f, float omegaRelLimit = 0.005f) {
_RRCTapCount = RRCTapCount; _RRCTapCount = RRCTapCount;
_RRCAlpha = RRCAlpha; _RRCAlpha = RRCAlpha;
_sampleRate = sampleRate; _sampleRate = sampleRate;
@ -680,4 +680,89 @@ namespace dsp {
float _muGain; float _muGain;
float _omegaRelLimit; float _omegaRelLimit;
}; };
class PMDemod : public generic_hier_block<PMDemod> {
public:
PMDemod() {}
PMDemod(stream<complex_t>* input, float sampleRate, float baudRate, float agcRate = 0.02e-3f, float pllLoopBandwidth = (0.06f*0.06f) / 4.0f, int rrcTapCount = 31, float rrcAlpha = 0.6f, float omegaGain = (0.01*0.01) / 4, float muGain = 0.01f, float omegaRelLimit = 0.005f) {
init(input, sampleRate, baudRate, agcRate, pllLoopBandwidth, rrcTapCount, rrcAlpha, omegaGain, muGain, omegaRelLimit);
}
void init(stream<complex_t>* input, float sampleRate, float baudRate, float agcRate = 0.02e-3f, float pllLoopBandwidth = (0.06f*0.06f) / 4.0f, int rrcTapCount = 31, float rrcAlpha = 0.6f, float omegaGain = (0.01*0.01) / 4, float muGain = 0.01f, float omegaRelLimit = 0.005f) {
_sampleRate = sampleRate;
_baudRate = baudRate;
_agcRate = agcRate;
_pllLoopBandwidth = pllLoopBandwidth;
_rrcTapCount = rrcTapCount;
_rrcAlpha = rrcAlpha;
_omegaGain = omegaGain;
_muGain = muGain;
_omegaRelLimit = omegaRelLimit;
agc.init(input, 1.0f, 65535, _agcRate);
pll.init(&agc.out, _pllLoopBandwidth);
rrcwin.init(_rrcTapCount, _sampleRate, _baudRate, _rrcAlpha);
rrc.init(&pll.out, &rrcwin);
recov.init(&rrc.out, _sampleRate / _baudRate, _omegaGain, _muGain, _omegaRelLimit);
out = &recov.out;
generic_hier_block<PMDemod>::registerBlock(&agc);
generic_hier_block<PMDemod>::registerBlock(&pll);
generic_hier_block<PMDemod>::registerBlock(&rrc);
generic_hier_block<PMDemod>::registerBlock(&recov);
}
void setInput(stream<complex_t>* input) {
agc.setInput(input);
}
void setAgcRate(float agcRate) {
_agcRate = agcRate;
agc.setRate(_agcRate);
}
void setPllLoopBandwidth(float pllLoopBandwidth) {
_pllLoopBandwidth = pllLoopBandwidth;
pll.setLoopBandwidth(_pllLoopBandwidth);
}
void setRRCParams(int rrcTapCount, float rrcAlpha) {
_rrcTapCount = rrcTapCount;
_rrcAlpha = rrcAlpha;
rrcwin.setTapCount(_rrcTapCount);
rrcwin.setAlpha(_rrcAlpha);
rrc.updateWindow(&rrcwin);
}
void setMMGains(float omegaGain, float muGain) {
_omegaGain = omegaGain;
_muGain = muGain;
recov.setGains(_omegaGain, _muGain);
}
void setOmegaRelLimit(float omegaRelLimit) {
_omegaRelLimit = omegaRelLimit;
recov.setOmegaRelLimit(_omegaRelLimit);
}
stream<float>* out = NULL;
private:
dsp::ComplexAGC agc;
dsp::CarrierTrackingPLL<float> pll;
dsp::RRCTaps rrcwin;
dsp::FIR<float> rrc;
dsp::MMClockRecovery<float> recov;
float _sampleRate;
float _baudRate;
float _agcRate;
float _pllLoopBandwidth;
int _rrcTapCount;
float _rrcAlpha;
float _omegaGain;
float _muGain;
float _omegaRelLimit;
};
} }

View File

@ -115,4 +115,206 @@ namespace dsp {
stream<complex_t>* _in; stream<complex_t>* _in;
}; };
template <class T>
class CarrierTrackingPLL: public generic_block<CarrierTrackingPLL<T>> {
public:
CarrierTrackingPLL() {}
CarrierTrackingPLL(stream<complex_t>* in, float loopBandwidth) { init(in, loopBandwidth); }
void init(stream<complex_t>* in, float loopBandwidth) {
_in = in;
lastVCO.re = 1.0f;
lastVCO.im = 0.0f;
_loopBandwidth = loopBandwidth;
float dampningFactor = sqrtf(2.0f) / 2.0f;
float denominator = (1.0 + 2.0 * dampningFactor * _loopBandwidth + _loopBandwidth * _loopBandwidth);
_alpha = (4 * dampningFactor * _loopBandwidth) / denominator;
_beta = (4 * _loopBandwidth * _loopBandwidth) / denominator;
generic_block<CarrierTrackingPLL<T>>::registerInput(_in);
generic_block<CarrierTrackingPLL<T>>::registerOutput(&out);
}
void setInput(stream<complex_t>* in) {
generic_block<CarrierTrackingPLL<T>>::tempStop();
generic_block<CarrierTrackingPLL<T>>::unregisterInput(_in);
_in = in;
generic_block<CarrierTrackingPLL<T>>::registerInput(_in);
generic_block<CarrierTrackingPLL<T>>::tempStart();
}
void setLoopBandwidth(float loopBandwidth) {
generic_block<CarrierTrackingPLL<T>>::tempStop();
_loopBandwidth = loopBandwidth;
float dampningFactor = sqrtf(2.0f) / 2.0f;
float denominator = (1.0 + 2.0 * dampningFactor * _loopBandwidth + _loopBandwidth * _loopBandwidth);
_alpha = (4 * dampningFactor * _loopBandwidth) / denominator;
_beta = (4 * _loopBandwidth * _loopBandwidth) / denominator;
generic_block<CarrierTrackingPLL<T>>::tempStart();
}
int run() {
int count = _in->read();
if (count < 0) { return -1; }
complex_t outVal;
float error;
for (int i = 0; i < count; i++) {
// Mix the VFO with the input to create the output value
outVal.re = (lastVCO.re*_in->readBuf[i].re) - ((-lastVCO.im)*_in->readBuf[i].im);
outVal.im = ((-lastVCO.im)*_in->readBuf[i].re) + (lastVCO.re*_in->readBuf[i].im);
if constexpr (std::is_same_v<T, float>) {
out.writeBuf[i] = outVal.fastPhase();
}
if constexpr (std::is_same_v<T, complex_t>) {
out.writeBuf[i] = outVal;
}
// Calculate the phase error estimation
// TODO: Figure out why fastPhase doesn't work
error = _in->readBuf[i].phase() - vcoPhase;
if (error > 3.1415926535f) { error -= 2.0f * 3.1415926535f; }
else if (error <= -3.1415926535f) { error += 2.0f * 3.1415926535f; }
// if (error > 1.0f) { error = 1.0f; }
// else if (error < -1.0f) { error = -1.0f; }
// Integrate frequency and clamp it
vcoFrequency += _beta * error;
if (vcoFrequency > 1.0f) { vcoFrequency = 1.0f; }
else if (vcoFrequency < -1.0f) { vcoFrequency = -1.0f; }
// Calculate new phase and wrap it
vcoPhase += vcoFrequency + (_alpha * error);
while (vcoPhase > (2.0f * FL_M_PI)) { vcoPhase -= (2.0f * FL_M_PI); }
while (vcoPhase < (-2.0f * FL_M_PI)) { vcoPhase += (2.0f * FL_M_PI); }
// Calculate output
lastVCO.re = cosf(vcoPhase);
lastVCO.im = sinf(vcoPhase);
}
_in->flush();
if (!out.swap(count)) { return -1; }
return count;
}
stream<T> out;
private:
float _loopBandwidth = 1.0f;
float _alpha; // Integral coefficient
float _beta; // Proportional coefficient
float vcoFrequency = 0.0f;
float vcoPhase = 0.0f;
complex_t lastVCO;
stream<complex_t>* _in;
};
class PLL: public generic_block<PLL> {
public:
PLL() {}
PLL(stream<complex_t>* in, float loopBandwidth) { init(in, loopBandwidth); }
void init(stream<complex_t>* in, float loopBandwidth) {
_in = in;
lastVCO.re = 1.0f;
lastVCO.im = 0.0f;
_loopBandwidth = loopBandwidth;
float dampningFactor = sqrtf(2.0f) / 2.0f;
float denominator = (1.0 + 2.0 * dampningFactor * _loopBandwidth + _loopBandwidth * _loopBandwidth);
_alpha = (4 * dampningFactor * _loopBandwidth) / denominator;
_beta = (4 * _loopBandwidth * _loopBandwidth) / denominator;
generic_block<PLL>::registerInput(_in);
generic_block<PLL>::registerOutput(&out);
}
void setInput(stream<complex_t>* in) {
generic_block<PLL>::tempStop();
generic_block<PLL>::unregisterInput(_in);
_in = in;
generic_block<PLL>::registerInput(_in);
generic_block<PLL>::tempStart();
}
void setLoopBandwidth(float loopBandwidth) {
generic_block<PLL>::tempStop();
_loopBandwidth = loopBandwidth;
float dampningFactor = sqrtf(2.0f) / 2.0f;
float denominator = (1.0 + 2.0 * dampningFactor * _loopBandwidth + _loopBandwidth * _loopBandwidth);
_alpha = (4 * dampningFactor * _loopBandwidth) / denominator;
_beta = (4 * _loopBandwidth * _loopBandwidth) / denominator;
generic_block<PLL>::tempStart();
}
int run() {
int count = _in->read();
if (count < 0) { return -1; }
complex_t outVal;
float error;
for (int i = 0; i < count; i++) {
// Mix the VFO with the input to create the output value
outVal.re = (lastVCO.re*_in->readBuf[i].re) - ((-lastVCO.im)*_in->readBuf[i].im);
outVal.im = ((-lastVCO.im)*_in->readBuf[i].re) + (lastVCO.re*_in->readBuf[i].im);
out.writeBuf[i] = lastVCO;
// Calculate the phase error estimation
// TODO: Figure out why fastPhase doesn't work
error = _in->readBuf[i].phase() - vcoPhase;
if (error > 3.1415926535f) { error -= 2.0f * 3.1415926535f; }
else if (error <= -3.1415926535f) { error += 2.0f * 3.1415926535f; }
// if (error > 1.0f) { error = 1.0f; }
// else if (error < -1.0f) { error = -1.0f; }
// Integrate frequency and clamp it
vcoFrequency += _beta * error;
if (vcoFrequency > 1.0f) { vcoFrequency = 1.0f; }
else if (vcoFrequency < -1.0f) { vcoFrequency = -1.0f; }
// Calculate new phase and wrap it
vcoPhase += vcoFrequency + (_alpha * error);
while (vcoPhase > (2.0f * FL_M_PI)) { vcoPhase -= (2.0f * FL_M_PI); }
while (vcoPhase < (-2.0f * FL_M_PI)) { vcoPhase += (2.0f * FL_M_PI); }
// Calculate output
lastVCO.re = cosf(vcoPhase);
lastVCO.im = sinf(vcoPhase);
}
_in->flush();
if (!out.swap(count)) { return -1; }
return count;
}
stream<complex_t> out;
private:
float _loopBandwidth = 1.0f;
float _alpha; // Integral coefficient
float _beta; // Proportional coefficient
float vcoFrequency = 0.0f;
float vcoPhase = 0.0f;
complex_t lastVCO;
stream<complex_t>* _in;
};
} }

View File

@ -1,6 +1,7 @@
#pragma once #pragma once
#include <dsp/block.h> #include <dsp/block.h>
#include <dsp/buffer.h> #include <dsp/buffer.h>
#include <fstream>
namespace dsp { namespace dsp {
template <class T> template <class T>
@ -128,4 +129,53 @@ namespace dsp {
stream<T>* _in; stream<T>* _in;
}; };
template <class T>
class FileSink : public generic_block<FileSink<T>> {
public:
FileSink() {}
FileSink(stream<T>* in, std::string path) { init(in, path); }
~FileSink() {
generic_block<FileSink<T>>::stop();
if (file.is_open()) { file.close(); }
}
void init(stream<T>* in, std::string path) {
_in = in;
file = std::ofstream(path, std::ios::binary);
generic_block<FileSink<T>>::registerInput(_in);
}
void setInput(stream<T>* in) {
std::lock_guard<std::mutex> lck(generic_block<FileSink<T>>::ctrlMtx);
generic_block<FileSink<T>>::tempStop();
generic_block<FileSink<T>>::unregisterInput(_in);
_in = in;
generic_block<FileSink<T>>::registerInput(_in);
generic_block<FileSink<T>>::tempStart();
}
bool isOpen() {
return file.is_open();
}
int run() {
int count = _in->read();
if (count < 0) { return -1; }
if (file.is_open()) {
file.write((char*)_in->readBuf, count * sizeof(T));
}
_in->flush();
return count;
}
private:
stream<T>* _in;
std::ofstream file;
};
} }

View File

@ -1,7 +1,8 @@
#include <gui/widgets/symbol_diagram.h> #include <gui/widgets/symbol_diagram.h>
namespace ImGui { namespace ImGui {
SymbolDiagram::SymbolDiagram() { SymbolDiagram::SymbolDiagram(float scale) {
_scale = scale;
memset(buffer, 0, 1024 * sizeof(float)); memset(buffer, 0, 1024 * sizeof(float));
} }
@ -23,9 +24,11 @@ namespace ImGui {
window->DrawList->AddRectFilled(min, ImVec2(min.x+size.x, min.y+size.y), IM_COL32(0,0,0,255)); window->DrawList->AddRectFilled(min, ImVec2(min.x+size.x, min.y+size.y), IM_COL32(0,0,0,255));
ImU32 col = ImGui::GetColorU32(ImGuiCol_CheckMark, 0.7f); ImU32 col = ImGui::GetColorU32(ImGuiCol_CheckMark, 0.7f);
float increment = size.x / 1024.0f; float increment = size.x / 1024.0f;
float val;
for (int i = 0; i < 1024; i++) { for (int i = 0; i < 1024; i++) {
if (buffer[i] > 1.0f || buffer[i] < -1.0f) { continue; } val = buffer[i] * _scale;
window->DrawList->AddCircleFilled(ImVec2(((float)i * increment) + min.x, ((buffer[i] + 1) * (size.y*0.5f)) + min.y), 2, col); if (val > 1.0f || val < -1.0f) { continue; }
window->DrawList->AddCircleFilled(ImVec2(((float)i * increment) + min.x, ((val + 1) * (size.y*0.5f)) + min.y), 2, col);
} }
} }

View File

@ -8,7 +8,7 @@
namespace ImGui { namespace ImGui {
class SymbolDiagram { class SymbolDiagram {
public: public:
SymbolDiagram(); SymbolDiagram(float _scale = 1.0f);
void draw(const ImVec2& size_arg = ImVec2(0, 0)); void draw(const ImVec2& size_arg = ImVec2(0, 0));
@ -19,6 +19,7 @@ namespace ImGui {
private: private:
std::mutex bufferMtx; std::mutex bufferMtx;
float buffer[1024]; float buffer[1024];
float _scale;
}; };
} }

View File

@ -7,6 +7,8 @@
#include <gui/style.h> #include <gui/style.h>
#include <config.h> #include <config.h>
#include <libhackrf/hackrf.h> #include <libhackrf/hackrf.h>
#include <gui/widgets/stepped_slider.h>
#include <options.h>
#pragma optimize( "", off ) #pragma optimize( "", off )
@ -20,7 +22,7 @@ SDRPP_MOD_INFO {
/* Max instances */ 1 /* Max instances */ 1
}; };
//ConfigManager config; ConfigManager config;
const char* AGG_MODES_STR = "Off\0Low\0High\0"; const char* AGG_MODES_STR = "Off\0Low\0High\0";
@ -36,6 +38,43 @@ const int sampleRates[] = {
2000000, 2000000,
}; };
const int bandwidths[] = {
1750000,
2500000,
3500000,
5000000,
5500000,
6000000,
7000000,
8000000,
9000000,
10000000,
12000000,
14000000,
15000000,
20000000,
24000000,
28000000,
};
const char* bandwidthsTxt = "1.75MHz\0"
"2.5MHz\0"
"3.5MHz\0"
"5MHz\0"
"5.5MHz\0"
"6MHz\0"
"7MHz\0"
"8MHz\0"
"9MHz\0"
"10MHz\0"
"12MHz\0"
"14MHz\0"
"15MHz\0"
"20MHz\0"
"24MHz\0"
"28MHz\0"
"Auto\0";
class HackRFSourceModule : public ModuleManager::Instance { class HackRFSourceModule : public ModuleManager::Instance {
public: public:
HackRFSourceModule(std::string name) { HackRFSourceModule(std::string name) {
@ -43,7 +82,9 @@ public:
hackrf_init(); hackrf_init();
// Select the last samplerate option
sampleRate = 2000000; sampleRate = 2000000;
srId = 6;
handler.ctx = this; handler.ctx = this;
handler.selectHandler = menuSelected; handler.selectHandler = menuSelected;
@ -56,11 +97,10 @@ public:
refresh(); refresh();
selectFirst(); config.aquire();
std::string confSerial = config.conf["device"];
// config.aquire(); config.release();
// std::string serString = config.conf["device"]; selectBySerial(confSerial);
// config.release();
sigpath::sourceManager.registerSource("HackRF", &handler); sigpath::sourceManager.registerSource("HackRF", &handler);
} }
@ -100,8 +140,67 @@ public:
void selectFirst() { void selectFirst() {
if (devList.size() != 0) { if (devList.size() != 0) {
selectedSerial = devList[0]; selectBySerial(devList[0]);
return;
} }
selectedSerial = "";
}
void selectBySerial(std::string serial) {
if (std::find(devList.begin(), devList.end(), serial) == devList.end()) {
selectFirst();
return;
}
bool created = false;
config.aquire();
if (!config.conf["devices"].contains(serial)) {
config.conf["devices"][serial]["sampleRate"] = 2000000;
config.conf["devices"][serial]["biasT"] = false;
config.conf["devices"][serial]["amp"] = false;
config.conf["devices"][serial]["lnaGain"] = 0;
config.conf["devices"][serial]["vgaGain"] = 0;
config.conf["devices"][serial]["bandwidth"] = 16;
}
config.release(created);
// Set default values
srId = 0;
sampleRate = 2000000;
biasT = false;
amp = false;
lna = 0;
vga = 0;
bwId = 16;
// Load from config if available and validate
if (config.conf["devices"][serial].contains("sampleRate")) {
int psr = config.conf["devices"][serial]["sampleRate"];
for (int i = 0; i < 7; i++) {
if (sampleRates[i] == psr) {
sampleRate = psr;
srId = i;
}
}
}
if (config.conf["devices"][serial].contains("biasT")) {
biasT = config.conf["devices"][serial]["biasT"];
}
if (config.conf["devices"][serial].contains("amp")) {
amp = config.conf["devices"][serial]["amp"];
}
if (config.conf["devices"][serial].contains("lnaGain")) {
lna = config.conf["devices"][serial]["lnaGain"];
}
if (config.conf["devices"][serial].contains("vgaGain")) {
vga = config.conf["devices"][serial]["vgaGain"];
}
if (config.conf["devices"][serial].contains("bandwidth")) {
bwId = config.conf["devices"][serial]["bandwidth"];
bwId = std::clamp<int>(bwId, 0, 16);
}
selectedSerial = serial;
} }
private: private:
@ -116,7 +215,10 @@ private:
spdlog::info("HackRFSourceModule '{0}': Menu Deselect!", _this->name); spdlog::info("HackRFSourceModule '{0}': Menu Deselect!", _this->name);
} }
int bandwidthIdToBw(int id) {
if (id == 16) { return hackrf_compute_baseband_filter_bw(sampleRate); }
return bandwidths[id];
}
static void start(void* ctx) { static void start(void* ctx) {
HackRFSourceModule* _this = (HackRFSourceModule*)ctx; HackRFSourceModule* _this = (HackRFSourceModule*)ctx;
@ -135,12 +237,13 @@ private:
} }
hackrf_set_sample_rate(_this->openDev, _this->sampleRate); hackrf_set_sample_rate(_this->openDev, _this->sampleRate);
hackrf_set_baseband_filter_bandwidth(_this->openDev, hackrf_compute_baseband_filter_bw(_this->sampleRate)); hackrf_set_baseband_filter_bandwidth(_this->openDev, _this->bandwidthIdToBw(_this->bwId));
hackrf_set_freq(_this->openDev, _this->freq); hackrf_set_freq(_this->openDev, _this->freq);
hackrf_set_antenna_enable(_this->openDev, _this->biasT);
hackrf_set_amp_enable(_this->openDev, _this->amp); hackrf_set_amp_enable(_this->openDev, _this->amp);
hackrf_set_lna_gain(_this->openDev, _this->lna); hackrf_set_lna_gain(_this->openDev, _this->lna);
hackrf_set_vga_gain(_this->openDev, _this->lna); hackrf_set_vga_gain(_this->openDev, _this->vga);
hackrf_start_rx(_this->openDev, callback, _this); hackrf_start_rx(_this->openDev, callback, _this);
@ -179,11 +282,17 @@ private:
ImGui::SetNextItemWidth(menuWidth); ImGui::SetNextItemWidth(menuWidth);
if (ImGui::Combo(CONCAT("##_hackrf_dev_sel_", _this->name), &_this->devId, _this->devListTxt.c_str())) { if (ImGui::Combo(CONCAT("##_hackrf_dev_sel_", _this->name), &_this->devId, _this->devListTxt.c_str())) {
_this->selectedSerial = _this->devList[_this->devId]; _this->selectedSerial = _this->devList[_this->devId];
config.aquire();
config.conf["device"] = _this->selectedSerial;
config.release(true);
} }
if (ImGui::Combo(CONCAT("##_hackrf_sr_sel_", _this->name), &_this->srId, sampleRatesTxt)) { if (ImGui::Combo(CONCAT("##_hackrf_sr_sel_", _this->name), &_this->srId, sampleRatesTxt)) {
_this->sampleRate = sampleRates[_this->srId]; _this->sampleRate = sampleRates[_this->srId];
core::setInputSampleRate(_this->sampleRate); core::setInputSampleRate(_this->sampleRate);
config.aquire();
config.conf["devices"][_this->selectedSerial]["sampleRate"] = _this->sampleRate;
config.release(true);
} }
ImGui::SameLine(); ImGui::SameLine();
@ -194,30 +303,58 @@ private:
if (_this->running) { style::endDisabled(); } if (_this->running) { style::endDisabled(); }
ImGui::Text("Amp Enabled"); ImGui::Text("Bandwidth");
ImGui::SameLine(); ImGui::SameLine();
if (ImGui::Checkbox(CONCAT("##_hackrf_amp_", _this->name), &_this->amp)) { ImGui::SetNextItemWidth(menuWidth - ImGui::GetCursorPosX());
if (ImGui::Combo(CONCAT("##_hackrf_bw_sel_", _this->name), &_this->bwId, bandwidthsTxt)) {
if (_this->running) {
hackrf_set_baseband_filter_bandwidth(_this->openDev, _this->bandwidthIdToBw(_this->bwId));
}
config.aquire();
config.conf["devices"][_this->selectedSerial]["bandwidth"] = _this->bwId;
config.release(true);
}
if (ImGui::Checkbox(CONCAT("Bias-T##_hackrf_bt_", _this->name), &_this->biasT)) {
if (_this->running) {
hackrf_set_antenna_enable(_this->openDev, _this->biasT);
}
config.aquire();
config.conf["devices"][_this->selectedSerial]["biasT"] = _this->biasT;
config.release(true);
}
if (ImGui::Checkbox(CONCAT("Amp Enabled##_hackrf_amp_", _this->name), &_this->amp)) {
if (_this->running) { if (_this->running) {
hackrf_set_amp_enable(_this->openDev, _this->amp); hackrf_set_amp_enable(_this->openDev, _this->amp);
} }
config.aquire();
config.conf["devices"][_this->selectedSerial]["amp"] = _this->amp;
config.release(true);
} }
ImGui::Text("LNA Gain"); ImGui::Text("LNA Gain");
ImGui::SameLine(); ImGui::SameLine();
if (ImGui::SliderInt(CONCAT("##_hackrf_lna_", _this->name), &_this->lna, 0, 40)) { ImGui::SetNextItemWidth(menuWidth - ImGui::GetCursorPosX());
_this->lna = (_this->lna / 8) * 8; if (ImGui::SliderFloatWithSteps(CONCAT("##_hackrf_lna_", _this->name), &_this->lna, 0, 40, 8, "%.0fdB")) {
if (_this->running) { if (_this->running) {
hackrf_set_lna_gain(_this->openDev, _this->lna); hackrf_set_lna_gain(_this->openDev, _this->lna);
} }
config.aquire();
config.conf["devices"][_this->selectedSerial]["lnaGain"] = (int)_this->lna;
config.release(true);
} }
ImGui::Text("LNA Gain"); ImGui::Text("VGA Gain");
ImGui::SameLine(); ImGui::SameLine();
if (ImGui::SliderInt(CONCAT("##_hackrf_vga_", _this->name), &_this->vga, 0, 62)) { ImGui::SetNextItemWidth(menuWidth - ImGui::GetCursorPosX());
_this->vga = (_this->vga / 2) * 2; if (ImGui::SliderFloatWithSteps(CONCAT("##_hackrf_vga_", _this->name), &_this->vga, 0, 62, 2, "%.0fdB")) {
if (_this->running) { if (_this->running) {
hackrf_set_vga_gain(_this->openDev, _this->lna); hackrf_set_vga_gain(_this->openDev, _this->vga);
} }
config.aquire();
config.conf["devices"][_this->selectedSerial]["vgaGain"] = (int)_this->vga;
config.release(true);
} }
} }
@ -244,21 +381,23 @@ private:
std::string selectedSerial = ""; std::string selectedSerial = "";
int devId = 0; int devId = 0;
int srId = 0; int srId = 0;
int bwId = 16;
bool biasT = false;
bool amp = false; bool amp = false;
int lna = 0; float lna = 0;
int vga = 0; float vga = 0;
std::vector<std::string> devList; std::vector<std::string> devList;
std::string devListTxt; std::string devListTxt;
}; };
MOD_EXPORT void _INIT_() { MOD_EXPORT void _INIT_() {
// config.setPath(ROOT_DIR "/airspyhf_config.json"); json def = json({});
// json defConf; def["devices"] = json({});
// defConf["device"] = ""; def["device"] = "";
// defConf["devices"] = json::object(); config.setPath(options::opts.root + "/hackrf_config.json");
// config.load(defConf); config.load(def);
// config.enableAutoSave(); config.enableAutoSave();
} }
MOD_EXPORT ModuleManager::Instance* _CREATE_INSTANCE_(std::string name) { MOD_EXPORT ModuleManager::Instance* _CREATE_INSTANCE_(std::string name) {
@ -270,8 +409,8 @@ MOD_EXPORT void _DELETE_INSTANCE_(ModuleManager::Instance* instance) {
} }
MOD_EXPORT void _END_() { MOD_EXPORT void _END_() {
// config.disableAutoSave(); config.disableAutoSave();
// config.save(); config.save();
} }
#pragma optimize( "", on ) #pragma optimize( "", on )

View File

@ -304,7 +304,9 @@ public:
config.conf["devices"][selectedName]["biast"] = false; config.conf["devices"][selectedName]["biast"] = false;
} }
else if (openDev.hwVer == SDRPLAY_RSPduo_ID) { else if (openDev.hwVer == SDRPLAY_RSPduo_ID) {
// TODO: Implement config.conf["devices"][selectedName]["fmNotch"] = false;
config.conf["devices"][selectedName]["dabNotch"] = false;
config.conf["devices"][selectedName]["biast"] = false;
} }
else if (openDev.hwVer == SDRPLAY_RSPdx_ID) { else if (openDev.hwVer == SDRPLAY_RSPdx_ID) {
config.conf["devices"][selectedName]["antenna"] = 0; config.conf["devices"][selectedName]["antenna"] = 0;
@ -369,7 +371,15 @@ public:
} }
} }
else if (openDev.hwVer == SDRPLAY_RSPduo_ID) { else if (openDev.hwVer == SDRPLAY_RSPduo_ID) {
// TODO: Implement if (config.conf["devices"][selectedName].contains("fmNotch")) {
rspduo_fmNotch = config.conf["devices"][selectedName]["fmNotch"];
}
if (config.conf["devices"][selectedName].contains("dabNotch")) {
rspduo_dabNotch = config.conf["devices"][selectedName]["dabNotch"];
}
if (config.conf["devices"][selectedName].contains("biast")) {
rspduo_biasT = config.conf["devices"][selectedName]["biast"];
}
} }
else if (openDev.hwVer == SDRPLAY_RSPdx_ID) { else if (openDev.hwVer == SDRPLAY_RSPdx_ID) {
if (config.conf["devices"][selectedName].contains("antenna")) { if (config.conf["devices"][selectedName].contains("antenna")) {
@ -467,6 +477,9 @@ private:
sdrplay_api_Update(_this->openDev.dev, _this->openDev.tuner, sdrplay_api_Update_Rsp2_BiasTControl, sdrplay_api_Update_Ext1_None); sdrplay_api_Update(_this->openDev.dev, _this->openDev.tuner, sdrplay_api_Update_Rsp2_BiasTControl, sdrplay_api_Update_Ext1_None);
sdrplay_api_Update(_this->openDev.dev, _this->openDev.tuner, sdrplay_api_Update_Rsp2_AntennaControl, sdrplay_api_Update_Ext1_None); sdrplay_api_Update(_this->openDev.dev, _this->openDev.tuner, sdrplay_api_Update_Rsp2_AntennaControl, sdrplay_api_Update_Ext1_None);
sdrplay_api_Update(_this->openDev.dev, _this->openDev.tuner, sdrplay_api_Update_Rsp2_AmPortSelect, sdrplay_api_Update_Ext1_None); sdrplay_api_Update(_this->openDev.dev, _this->openDev.tuner, sdrplay_api_Update_Rsp2_AmPortSelect, sdrplay_api_Update_Ext1_None);
}
else if (_this->openDev.hwVer == SDRPLAY_RSPduo_ID) {
} }
else if (_this->openDev.hwVer == SDRPLAY_RSPdx_ID) { else if (_this->openDev.hwVer == SDRPLAY_RSPdx_ID) {
_this->openDevParams->devParams->rspDxParams.rfNotchEnable = _this->rspdx_fmNotch; _this->openDevParams->devParams->rspDxParams.rfNotchEnable = _this->rspdx_fmNotch;
@ -780,7 +793,9 @@ private:
int rsp2_antennaPort = 0; int rsp2_antennaPort = 0;
// RSP Duo Options // RSP Duo Options
bool rspduo_fmNotch = false;
bool rspduo_dabNotch = false;
bool rspduo_biasT = false;
// RSPdx Options // RSPdx Options
bool rspdx_fmNotch = false; bool rspdx_fmNotch = false;