mirror of
https://github.com/Jguer/yay.git
synced 2024-11-07 09:37:22 +01:00
293 lines
6.4 KiB
Go
293 lines
6.4 KiB
Go
package topo
|
|
|
|
import (
|
|
"fmt"
|
|
"strings"
|
|
)
|
|
|
|
type Mapable interface {
|
|
Key() string
|
|
}
|
|
|
|
type (
|
|
AliasMap[T comparable] map[T]T
|
|
NodeSet[T comparable] map[T]bool
|
|
DepMap[T comparable] map[T]NodeSet[T]
|
|
)
|
|
|
|
type Graph[T comparable] struct {
|
|
alias AliasMap[T]
|
|
nodes NodeSet[T]
|
|
|
|
// `dependencies` tracks child -> parents.
|
|
dependencies DepMap[T]
|
|
// `dependents` tracks parent -> children.
|
|
dependents DepMap[T]
|
|
// Keep track of the nodes of the graph themselves.
|
|
}
|
|
|
|
func New[T comparable]() *Graph[T] {
|
|
return &Graph[T]{
|
|
nodes: make(NodeSet[T]),
|
|
dependencies: make(DepMap[T]),
|
|
dependents: make(DepMap[T]),
|
|
alias: make(AliasMap[T]),
|
|
}
|
|
}
|
|
|
|
func (g *Graph[T]) Alias(node, alias T) error {
|
|
if alias == node {
|
|
return ErrSelfReferential
|
|
}
|
|
|
|
// add node
|
|
g.nodes[node] = true
|
|
|
|
// add alias
|
|
if _, ok := g.alias[alias]; ok {
|
|
return ErrConflictingAlias
|
|
}
|
|
g.alias[alias] = node
|
|
|
|
return nil
|
|
}
|
|
|
|
func (g *Graph[T]) AddNode(node T) {
|
|
// check aliases
|
|
if aliasNode, ok := g.alias[node]; ok {
|
|
node = aliasNode
|
|
}
|
|
|
|
g.nodes[node] = true
|
|
}
|
|
|
|
func (g *Graph[T]) DependOn(child, parent T) error {
|
|
if child == parent {
|
|
return ErrSelfReferential
|
|
}
|
|
|
|
if g.DependsOn(parent, child) {
|
|
return ErrCircular
|
|
}
|
|
|
|
g.AddNode(parent)
|
|
g.AddNode(child)
|
|
|
|
// Add nodes.
|
|
g.nodes[parent] = true
|
|
g.nodes[child] = true
|
|
|
|
// Add edges.
|
|
g.dependents.addNodeToNodeset(parent, child)
|
|
g.dependencies.addNodeToNodeset(child, parent)
|
|
|
|
return nil
|
|
}
|
|
|
|
func (g *Graph[T]) String() string {
|
|
var sb strings.Builder
|
|
sb.WriteString("digraph {\n")
|
|
// sb.WriteString("rankdir=LR;\n")
|
|
sb.WriteString("node [shape = record, ordering=out];\n")
|
|
for node := range g.nodes {
|
|
sb.WriteString(fmt.Sprintf("\t\"%v\";\n", node))
|
|
}
|
|
for parent, children := range g.dependencies {
|
|
for child := range children {
|
|
sb.WriteString(fmt.Sprintf("\t\"%v\" -> \"%v\";\n", parent, child))
|
|
}
|
|
}
|
|
sb.WriteString("}")
|
|
return sb.String()
|
|
}
|
|
|
|
func (g *Graph[T]) DependsOn(child, parent T) bool {
|
|
deps := g.Dependencies(child)
|
|
_, ok := deps[parent]
|
|
|
|
return ok
|
|
}
|
|
|
|
func (g *Graph[T]) HasDependent(parent, child T) bool {
|
|
deps := g.Dependents(parent)
|
|
_, ok := deps[child]
|
|
|
|
return ok
|
|
}
|
|
|
|
func (g *Graph[T]) Leaves() []T {
|
|
leaves := make([]T, 0)
|
|
|
|
for node := range g.nodes {
|
|
if _, ok := g.dependencies[node]; !ok {
|
|
leaves = append(leaves, node)
|
|
}
|
|
}
|
|
|
|
return leaves
|
|
}
|
|
|
|
// TopoSortedLayers returns a slice of all of the graph nodes in topological sort order. That is,
|
|
// if `B` depends on `A`, then `A` is guaranteed to come before `B` in the sorted output.
|
|
// The graph is guaranteed to be cycle-free because cycles are detected while building the
|
|
// graph. Additionally, the output is grouped into "layers", which are guaranteed to not have
|
|
// any dependencies within each layer. This is useful, e.g. when building an execution plan for
|
|
// some DAG, in which case each element within each layer could be executed in parallel. If you
|
|
// do not need this layered property, use `Graph.TopoSorted()`, which flattens all elements.
|
|
func (g *Graph[T]) TopoSortedLayers() [][]T {
|
|
layers := [][]T{}
|
|
|
|
// Copy the graph
|
|
shrinkingGraph := g.clone()
|
|
|
|
for {
|
|
leaves := shrinkingGraph.Leaves()
|
|
if len(leaves) == 0 {
|
|
break
|
|
}
|
|
|
|
layers = append(layers, leaves)
|
|
|
|
for _, leafNode := range leaves {
|
|
shrinkingGraph.remove(leafNode)
|
|
}
|
|
}
|
|
|
|
return layers
|
|
}
|
|
|
|
func (dm DepMap[T]) removeFromDepmap(key, node T) {
|
|
if nodes := dm[key]; len(nodes) == 1 {
|
|
// The only element in the nodeset must be `node`, so we
|
|
// can delete the entry entirely.
|
|
delete(dm, key)
|
|
} else {
|
|
// Otherwise, remove the single node from the nodeset.
|
|
delete(nodes, node)
|
|
}
|
|
}
|
|
|
|
func (g *Graph[T]) remove(node T) {
|
|
// Remove edges from things that depend on `node`.
|
|
for dependent := range g.dependents[node] {
|
|
g.dependencies.removeFromDepmap(dependent, node)
|
|
}
|
|
|
|
delete(g.dependents, node)
|
|
|
|
// Remove all edges from node to the things it depends on.
|
|
for dependency := range g.dependencies[node] {
|
|
g.dependents.removeFromDepmap(dependency, node)
|
|
}
|
|
|
|
delete(g.dependencies, node)
|
|
|
|
// Finally, remove the node itself.
|
|
delete(g.nodes, node)
|
|
}
|
|
|
|
// TopoSorted returns all the nodes in the graph is topological sort order.
|
|
// See also `Graph.TopoSortedLayers()`.
|
|
func (g *Graph[T]) TopoSorted() []T {
|
|
nodeCount := 0
|
|
layers := g.TopoSortedLayers()
|
|
|
|
for _, layer := range layers {
|
|
nodeCount += len(layer)
|
|
}
|
|
|
|
allNodes := make([]T, 0, nodeCount)
|
|
|
|
for _, layer := range layers {
|
|
allNodes = append(allNodes, layer...)
|
|
}
|
|
|
|
return allNodes
|
|
}
|
|
|
|
func (g *Graph[T]) Dependencies(child T) NodeSet[T] {
|
|
return g.buildTransitive(child, g.immediateDependencies)
|
|
}
|
|
|
|
func (g *Graph[T]) immediateDependencies(node T) NodeSet[T] {
|
|
return g.dependencies[node]
|
|
}
|
|
|
|
func (g *Graph[T]) Dependents(parent T) NodeSet[T] {
|
|
return g.buildTransitive(parent, g.immediateDependents)
|
|
}
|
|
|
|
func (g *Graph[T]) immediateDependents(node T) NodeSet[T] {
|
|
return g.dependents[node]
|
|
}
|
|
|
|
func (g *Graph[T]) clone() *Graph[T] {
|
|
return &Graph[T]{
|
|
dependencies: g.dependencies.copy(),
|
|
dependents: g.dependents.copy(),
|
|
nodes: g.nodes.copy(),
|
|
}
|
|
}
|
|
|
|
// buildTransitive starts at `root` and continues calling `nextFn` to keep discovering more nodes until
|
|
// the graph cannot produce any more. It returns the set of all discovered nodes.
|
|
func (g *Graph[T]) buildTransitive(root T, nextFn func(T) NodeSet[T]) NodeSet[T] {
|
|
if _, ok := g.nodes[root]; !ok {
|
|
return nil
|
|
}
|
|
|
|
out := make(NodeSet[T])
|
|
searchNext := []T{root}
|
|
|
|
for len(searchNext) > 0 {
|
|
// List of new nodes from this layer of the dependency graph. This is
|
|
// assigned to `searchNext` at the end of the outer "discovery" loop.
|
|
discovered := []T{}
|
|
|
|
for _, node := range searchNext {
|
|
// For each node to discover, find the next nodes.
|
|
for nextNode := range nextFn(node) {
|
|
// If we have not seen the node before, add it to the output as well
|
|
// as the list of nodes to traverse in the next iteration.
|
|
if _, ok := out[nextNode]; !ok {
|
|
out[nextNode] = true
|
|
|
|
discovered = append(discovered, nextNode)
|
|
}
|
|
}
|
|
}
|
|
|
|
searchNext = discovered
|
|
}
|
|
|
|
return out
|
|
}
|
|
|
|
func (s NodeSet[T]) copy() NodeSet[T] {
|
|
out := make(NodeSet[T], len(s))
|
|
for k, v := range s {
|
|
out[k] = v
|
|
}
|
|
|
|
return out
|
|
}
|
|
|
|
func (m DepMap[T]) copy() DepMap[T] {
|
|
out := make(DepMap[T], len(m))
|
|
for k, v := range m {
|
|
out[k] = v.copy()
|
|
}
|
|
|
|
return out
|
|
}
|
|
|
|
func (dm DepMap[T]) addNodeToNodeset(key, node T) {
|
|
nodes, ok := dm[key]
|
|
if !ok {
|
|
nodes = make(NodeSet[T])
|
|
dm[key] = nodes
|
|
}
|
|
|
|
nodes[node] = true
|
|
}
|