mirror of
https://github.com/rtlsdrblog/rtl-sdr-blog.git
synced 2025-01-07 00:37:17 +01:00
c4c48a69ea
Fix selection of VCO band (needed for example to get to 166 MHz) for the FC0012 tuner, and add a lot of register descriptions. Signed-Off-by: Michael Karcher <osmosdr@mkarcher.dialup.fu-berlin.de> Signed-off-by: Steve Markgraf <steve@steve-m.de>
328 lines
9.6 KiB
C
328 lines
9.6 KiB
C
/*
|
|
* fc0012 tuner support for rtl-sdr
|
|
*
|
|
* Based on tuner_fc0012.c found as part of the (seemingly GPLed)
|
|
* rtl2832u Linux DVB driver.
|
|
*
|
|
* Rewritten and hacked into rtl-sdr by David Basden <davidb-sdr@rcpt.to>
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdint.h>
|
|
|
|
#include "rtlsdr_i2c.h"
|
|
#include "tuner_fc0012.h"
|
|
|
|
#define CRYSTAL_FREQ 28800000
|
|
|
|
#define FC0012_LNAGAIN FC0012_LNA_GAIN_HI
|
|
|
|
/* Incomplete list of register settings:
|
|
*
|
|
* Name Reg Bits Desc
|
|
* CHIP_ID 0x00 0-7 Chip ID (constant 0xA1)
|
|
* RF_A 0x01 0-3 Number of count-to-9 cycles in RF
|
|
* divider (suggested: 2..9)
|
|
* RF_M 0x02 0-7 Total number of cycles (to-8 and to-9)
|
|
* in RF divider
|
|
* RF_K_HIGH 0x03 0-6 Bits 8..14 of fractional divider
|
|
* RF_K_LOW 0x04 0-7 Bits 0..7 of fractional RF divider
|
|
* RF_OUTDIV_A 0x05 3-7 Power of two required?
|
|
* LNA_POWER_DOWN 0x06 0 Set to 1 to switch off low noise amp
|
|
* RF_OUTDIV_B 0x06 1 Set to select 3 instead of 2 for the
|
|
* RF output divider
|
|
* VCO_SPEED 0x06 3 Select tuning range of VCO:
|
|
* 0 = Low range, (ca. 1.1 - 1.5GHz)
|
|
* 1 = High range (ca. 1.4 - 1.8GHz)
|
|
* BANDWIDTH 0x06 6-7 Set bandwidth. 6MHz = 0x80, 7MHz=0x40
|
|
* 8MHz=0x00
|
|
* XTAL_SPEED 0x07 5 Set to 1 for 28.8MHz Crystal input
|
|
* or 0 for 36MHz
|
|
* <agc params> 0x08 0-7
|
|
* EN_CAL_RSSI 0x09 4 Enable calibrate RSSI
|
|
* (Receive Signal Strength Indicator)
|
|
* LNA_FORCE 0x0d 0
|
|
* AGC_FORCE 0x0d ?
|
|
* LNA_GAIN 0x13 3-4 Low noise amp gain
|
|
* LNA_COMPS 0x15 3 ?
|
|
* VCO_CALIB 0x0e 7 Set high then low to calibrate VCO
|
|
* (fast lock?)
|
|
* VCO_VOLTAGE 0x0e 0-6 Read Control voltage of VCO
|
|
* (big value -> low freq)
|
|
*/
|
|
|
|
/* glue functions to rtl-sdr code */
|
|
int FC0012_Write(void *pTuner, unsigned char RegAddr, unsigned char Byte)
|
|
{
|
|
uint8_t data[2];
|
|
|
|
data[0] = RegAddr;
|
|
data[1] = Byte;
|
|
|
|
if (rtlsdr_i2c_write_fn(pTuner, FC0012_I2C_ADDR, data, 2) < 0)
|
|
return FC0012_ERROR;
|
|
|
|
return FC0012_OK;
|
|
}
|
|
|
|
int FC0012_Read(void *pTuner, unsigned char RegAddr, unsigned char *pByte)
|
|
{
|
|
uint8_t data = RegAddr;
|
|
|
|
if (rtlsdr_i2c_write_fn(pTuner, FC0012_I2C_ADDR, &data, 1) < 0)
|
|
return FC0012_ERROR;
|
|
|
|
if (rtlsdr_i2c_read_fn(pTuner, FC0012_I2C_ADDR, &data, 1) < 0)
|
|
return FC0012_ERROR;
|
|
|
|
*pByte = data;
|
|
|
|
return FC0012_OK;
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
#define DEBUGF printf
|
|
#else
|
|
#define DEBUGF(...) ()
|
|
#endif
|
|
#if 0
|
|
void FC0012_Dump_Registers()
|
|
{
|
|
#ifdef DEBUG
|
|
unsigned char regBuf;
|
|
int ret;
|
|
int i;
|
|
|
|
DEBUGF("\nFC0012 registers:\n");
|
|
for (i=0; i<=0x15; ++i)
|
|
{
|
|
ret = FC0012_Read(pTuner, i, ®Buf);
|
|
if (ret) DEBUGF("\nCouldn't read register %02x\n", i);
|
|
DEBUGF("R%x=%02x ",i,regBuf);
|
|
}
|
|
DEBUGF("\n");
|
|
FC0012_Read(pTuner, 0x06, ®Buf);
|
|
DEBUGF("LNA_POWER_DOWN:\t%s\n", regBuf & 1 ? "Powered down" : "Not Powered Down");
|
|
DEBUGF("VCO_SPEED:\t%s\n", regBuf & 0x8 ? "High speed" : "Slow speed");
|
|
DEBUGF("Bandwidth:\t%s\n", (regBuf & 0xC) ? "8MHz" : "less than 8MHz");
|
|
FC0012_Read(pTuner, 0x07, ®Buf);
|
|
DEBUGF("Crystal Speed:\t%s\n", (regBuf & 0x20) ? "28.8MHz" : "36MHZ<!>");
|
|
FC0012_Read(pTuner, 0x09, ®Buf);
|
|
DEBUGF("RSSI calibration mode:\t%s\n", (regBuf & 0x10) ? "RSSI CALIBRATION IN PROGRESS<!>" : "Disabled");
|
|
FC0012_Read(pTuner, 0x0d, ®Buf);
|
|
DEBUGF("LNA Force:\t%s\n", (regBuf & 0x1) ? "Forced" : "Not Forced");
|
|
FC0012_Read(pTuner, 0x13, ®Buf);
|
|
DEBUGF("LNA Gain:\t");
|
|
switch (regBuf & 0x18) {
|
|
case (0x00): DEBUGF("Low\n"); break;
|
|
case (0x08): DEBUGF("Middle\n"); break;
|
|
case (0x10): DEBUGF("High\n"); break;
|
|
default: DEBUGF("unknown gain value 0x18\n");
|
|
}
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
int FC0012_Open(void *pTuner)
|
|
{
|
|
// DEBUGF("FC0012_Open start");
|
|
if (FC0012_Write(pTuner, 0x01, 0x05)) return -1;
|
|
if (FC0012_Write(pTuner, 0x02, 0x10)) return -1;
|
|
if (FC0012_Write(pTuner, 0x03, 0x00)) return -1;
|
|
if (FC0012_Write(pTuner, 0x04, 0x00)) return -1;
|
|
if (FC0012_Write(pTuner, 0x05, 0x0F)) return -1;
|
|
if (FC0012_Write(pTuner, 0x06, 0x00)) return -1; // divider 2, VCO slow
|
|
if (FC0012_Write(pTuner, 0x07, 0x20)) return -1; // change to 0x00 for a 36MHz crystal
|
|
if (FC0012_Write(pTuner, 0x08, 0xFF)) return -1; // AGC Clock divide by 254, AGC gain 1/256, Loop Bw 1/8
|
|
if (FC0012_Write(pTuner, 0x09, 0x6E)) return -1; // Disable LoopThrough
|
|
if (FC0012_Write(pTuner, 0x0A, 0xB8)) return -1; // Disable LO Test Buffer
|
|
if (FC0012_Write(pTuner, 0x0B, 0x82)) return -1; // Output Clock is same as clock frequency
|
|
//if (FC0012_Write(pTuner, 0x0C, 0xF8)) return -1;
|
|
if (FC0012_Write(pTuner, 0x0C, 0xFC)) return -1; // AGC up-down mode
|
|
if (FC0012_Write(pTuner, 0x0D, 0x02)) return -1; // AGC Not Forcing & LNA Forcing
|
|
if (FC0012_Write(pTuner, 0x0E, 0x00)) return -1;
|
|
if (FC0012_Write(pTuner, 0x0F, 0x00)) return -1;
|
|
if (FC0012_Write(pTuner, 0x10, 0x00)) return -1;
|
|
if (FC0012_Write(pTuner, 0x11, 0x00)) return -1;
|
|
if (FC0012_Write(pTuner, 0x12, 0x1F)) return -1; // Set to maximum gain
|
|
if (FC0012_Write(pTuner, 0x13, FC0012_LNAGAIN)) return -1;
|
|
if (FC0012_Write(pTuner, 0x14, 0x00)) return -1;
|
|
if (FC0012_Write(pTuner, 0x15, 0x04)) return -1; // Enable LNA COMPS
|
|
|
|
/* Black magic from nim_rtl2832_fc0012.c in DVB driver.
|
|
Even though we've set 0x11 to 0x00 above, this needs to happen to have
|
|
it go back
|
|
*/
|
|
if (FC0012_Write(pTuner, 0x0d, 0x02)) return -1;
|
|
if (FC0012_Write(pTuner, 0x11, 0x00)) return -1;
|
|
if (FC0012_Write(pTuner, 0x15, 0x04)) return -1;
|
|
|
|
// DEBUGF("FC0012_Open SUCCESS");
|
|
return FC0012_OK;
|
|
}
|
|
|
|
# if 0
|
|
// Frequency is in kHz. Bandwidth is in MHz
|
|
// This is pseudocode to set GPIO6 for VHF/UHF filter switching.
|
|
// Trying to do this in reality leads to fail currently. I'm probably doing it wrong.
|
|
void FC0012_Frequency_Control(unsigned int Frequency, unsigned short Bandwidth)
|
|
{
|
|
if( Frequency < 260000 && Frequency > 150000 )
|
|
{
|
|
// set GPIO6 = low
|
|
|
|
// 1. Set tuner frequency
|
|
// 2. if the program quality is not good enough, switch to frequency + 500kHz
|
|
// 3. if the program quality is still no good, switch to frequency - 500kHz
|
|
}
|
|
else
|
|
{
|
|
// set GPIO6 = high
|
|
|
|
// set tuner frequency
|
|
}
|
|
}
|
|
#endif
|
|
|
|
int FC0012_SetFrequency(void *pTuner, unsigned long Frequency, unsigned short Bandwidth)
|
|
{
|
|
int VCO_band = 0;
|
|
unsigned long doubleVCO;
|
|
unsigned short xin, xdiv;
|
|
unsigned char reg[21], am, pm, multi;
|
|
unsigned char read_byte;
|
|
|
|
unsigned long CrystalFreqKhz;
|
|
|
|
// DEBUGF("FC0012_SetFrequency start");
|
|
|
|
CrystalFreqKhz = (rtlsdr_get_tuner_clock(pTuner) + 500) / 1000;
|
|
|
|
//===================================== Select frequency divider and the frequency of VCO
|
|
if (Frequency * 96 < 3560000)
|
|
{
|
|
multi = 96; reg[5] = 0x82; reg[6] = 0x00;
|
|
}
|
|
else if (Frequency * 64 < 3560000)
|
|
{
|
|
multi = 64; reg[5] = 0x82; reg[6] = 0x02;
|
|
}
|
|
else if (Frequency * 48 < 3560000)
|
|
{
|
|
multi = 48; reg[5] = 0x42; reg[6] = 0x00;
|
|
}
|
|
else if (Frequency * 32 < 3560000)
|
|
{
|
|
multi = 32; reg[5] = 0x42; reg[6] = 0x02;
|
|
}
|
|
else if (Frequency * 24 < 3560000)
|
|
{
|
|
multi = 24; reg[5] = 0x22; reg[6] = 0x00;
|
|
}
|
|
else if (Frequency * 16 < 3560000)
|
|
{
|
|
multi = 16; reg[5] = 0x22; reg[6] = 0x02;
|
|
}
|
|
else if (Frequency * 12 < 3560000)
|
|
{
|
|
multi = 12; reg[5] = 0x12; reg[6] = 0x00;
|
|
}
|
|
else if (Frequency * 8 < 3560000)
|
|
{
|
|
multi = 8; reg[5] = 0x12; reg[6] = 0x02;
|
|
}
|
|
else if (Frequency * 6 < 3560000)
|
|
{
|
|
multi = 6; reg[5] = 0x0A; reg[6] = 0x00;
|
|
}
|
|
else
|
|
{
|
|
multi = 4; reg[5] = 0x0A; reg[6] = 0x02;
|
|
}
|
|
|
|
doubleVCO = Frequency * multi;
|
|
|
|
reg[6] = reg[6] | 0x08;
|
|
VCO_band = 1;
|
|
xdiv = (unsigned short)(doubleVCO / (CrystalFreqKhz / 2));
|
|
if( (doubleVCO - xdiv * (CrystalFreqKhz / 2)) >= (CrystalFreqKhz / 4) )
|
|
xdiv = xdiv + 1;
|
|
|
|
pm = (unsigned char)( xdiv / 8 );
|
|
am = (unsigned char)( xdiv - (8 * pm));
|
|
|
|
if (am < 2) {
|
|
reg[1] = am + 8;
|
|
reg[2] = pm - 1;
|
|
} else {
|
|
reg[1] = am;
|
|
reg[2] = pm;
|
|
}
|
|
|
|
// From VCO frequency determines the XIN ( fractional part of Delta Sigma PLL) and divided value (XDIV).
|
|
xin = (unsigned short)(doubleVCO - ((unsigned short)(doubleVCO / (CrystalFreqKhz / 2))) * (CrystalFreqKhz / 2));
|
|
xin = ((xin << 15)/(unsigned short)(CrystalFreqKhz / 2));
|
|
if( xin >= (unsigned short) 16384 )
|
|
xin = xin + (unsigned short) 32768;
|
|
|
|
reg[3] = (unsigned char)(xin >> 8);
|
|
reg[4] = (unsigned char)(xin & 0x00FF);
|
|
|
|
// DEBUGF("Frequency: %lu, Fa: %d, Fp: %d, Xin:%d \n", Frequency, am, pm, xin);
|
|
|
|
switch(Bandwidth)
|
|
{
|
|
case 6: reg[6] = 0x80 | reg[6]; break;
|
|
case 7: reg[6] = (~0x80 & reg[6]) | 0x40; break;
|
|
case 8: default: reg[6] = ~0xC0 & reg[6]; break;
|
|
}
|
|
|
|
if (FC0012_Write(pTuner, 0x01, reg[1])) return -1;
|
|
if (FC0012_Write(pTuner, 0x02, reg[2])) return -1;
|
|
if (FC0012_Write(pTuner, 0x03, reg[3])) return -1;
|
|
if (FC0012_Write(pTuner, 0x04, reg[4])) return -1;
|
|
//reg[5] = reg[5] | 0x07; // This is really not cool. Why is it there?
|
|
if (FC0012_Write(pTuner, 0x05, reg[5])) return -1;
|
|
if (FC0012_Write(pTuner, 0x06, reg[6])) return -1;
|
|
|
|
// VCO Calibration
|
|
if (FC0012_Write(pTuner, 0x0E, 0x80)) return -1;
|
|
if (FC0012_Write(pTuner, 0x0E, 0x00)) return -1;
|
|
|
|
// Read resulting VCO control voltage
|
|
if (FC0012_Write(pTuner, 0x0E, 0x00)) return -1;
|
|
if (FC0012_Read(pTuner, 0x0E, &read_byte)) return -1;
|
|
reg[14] = 0x3F & read_byte;
|
|
|
|
// Adjust VCO range if control voltage is at the limit
|
|
if (VCO_band)
|
|
{
|
|
// high-band VCO hitting low frequency bound
|
|
if (reg[14] > 0x3C)
|
|
{
|
|
// select low-band VCO
|
|
reg[6] = ~0x08 & reg[6];
|
|
|
|
if (FC0012_Write(pTuner, 0x06, reg[6])) return -1;
|
|
if (FC0012_Write(pTuner, 0x0E, 0x80)) return -1;
|
|
if (FC0012_Write(pTuner, 0x0E, 0x00)) return -1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// low-band VCO hitting high frequency bound
|
|
if (reg[14] < 0x02) {
|
|
// select high-band VCO
|
|
reg[6] = 0x08 | reg[6];
|
|
|
|
if (FC0012_Write(pTuner, 0x06, reg[6])) return -1;
|
|
if (FC0012_Write(pTuner, 0x0E, 0x80)) return -1;
|
|
if (FC0012_Write(pTuner, 0x0E, 0x00)) return -1;
|
|
}
|
|
}
|
|
|
|
// DEBUGF("FC0012_SetFrequency SUCCESS"); FC0012_Dump_Registers();
|
|
return FC0012_OK;
|
|
}
|
|
|