diff --git a/src/rtl_fm.c b/src/rtl_fm.c index 2ad62f9..cd94b68 100644 --- a/src/rtl_fm.c +++ b/src/rtl_fm.c @@ -29,6 +29,9 @@ * in-place array operations * wide band support * sanity checks + * nicer FIR than square + * (tried this, was twice as slow and did not sound much better) + * scale squelch to other input parameters */ #include @@ -69,7 +72,8 @@ struct fm_state int pre_r; int pre_j; int prev_index; - int downsample; /* min 4, max 256 */ + int downsample; /* min 1, max 256 */ + int post_downsample; int output_scale; int squelch_level; int squelch_hits; @@ -84,6 +88,10 @@ struct fm_state int freq_len; int freq_now; uint32_t sample_rate; + int fir_enable; + int fir[256]; /* fir_len == downsample */ + int fir_sum; + int custom_atan; }; void usage(void) @@ -96,13 +104,17 @@ void usage(void) fprintf(stderr, "rtl_fm, a simple narrow band FM demodulator for RTL2832 based DVB-T receivers\n\n" "Usage:\t -f frequency_to_tune_to [Hz]\n" - "\t (use multiple -f for scanning !!BROKEN!!)\n" + "\t (use multiple -f for scanning)\n" "\t[-s samplerate (default: 24000 Hz)]\n" "\t[-d device_index (default: 0)]\n" "\t[-g tuner_gain (default: -1dB)]\n" "\t[-l squelch_level (default: 150)]\n" "\t[-E freq sets lower edge (default: center)]\n" "\tfilename (a '-' dumps samples to stdout)\n\n" + "Experimental quality/cpu options:\n" + "\t[-o oversampling (default: 1) !!BROKEN!!]\n" + "\t[-F enables high quality FIR (default: off/square)]\n" + "\t[-A enables high speed arctan (default: off)]\n\n" "Produces signed 16 bit ints, use Sox to hear them.\n" "\trtl_fm ... | play -t raw -r 24k -e signed-integer -b 16 -c 1 -V1 -\n\n"); #endif @@ -152,8 +164,8 @@ void rotate_90(unsigned char *buf, uint32_t len) } void low_pass(struct fm_state *fm, unsigned char *buf, uint32_t len) +/* simple square window FIR */ { - /* simple square window FIR */ int i=0, i2=0; while (i < (int)len) { fm->now_r += ((int)buf[i] - 128); @@ -173,6 +185,63 @@ void low_pass(struct fm_state *fm, unsigned char *buf, uint32_t len) fm->signal_len = i2; } +void build_fir(struct fm_state *fm) +/* for now, a simple triangle + * fancy FIRs are equally expensive, so use one */ +/* point = sum(sample[i] * fir[i] * fir_len / fir_sum) */ +{ + int i, len; + len = fm->downsample; + for(i = 0; i < len; i++) { + fm->fir[i] = i; + } + for(i = len-1; i <= 0; i--) { + fm->fir[i] = len - i; + } + fm->fir_sum = 0; + for(i = 0; i < len; i++) { + fm->fir_sum += fm->fir[i]; + } +} + +void low_pass_fir(struct fm_state *fm, unsigned char *buf, uint32_t len) +/* perform an arbitrary FIR, doubles CPU use */ +// possibly bugged, or overflowing +{ + int i=0, i2=0, i3=0; + while (i < (int)len) { + fm->prev_index++; + i3 = fm->prev_index; + fm->now_r += ((int)buf[i] - 128) * fm->fir[i3] * fm->downsample / fm->fir_sum; + fm->now_j += ((int)buf[i+1] - 128) * fm->fir[i3] * fm->downsample / fm->fir_sum; + i += 2; + if (fm->prev_index < (fm->downsample)) { + continue; + } + fm->signal[i2] = fm->now_r * fm->output_scale; + fm->signal[i2+1] = fm->now_j * fm->output_scale; + fm->prev_index = -1; + fm->now_r = 0; + fm->now_j = 0; + i2 += 2; + } + fm->signal_len = i2; +} + +int low_pass_simple(int16_t *signal2, int len, int step) +// no wrap around, length must be multiple of step +{ + int i, i2, sum; + for(i=0; i < len; i+=step) { + sum = 0; + for(i2=0; i2 (3.14159) || angle < (-3.14159)) + // {fprintf(stderr, "overflow %f\n", angle);} + return (int)(angle / 3.14159 * (1<<14)); +} + int fast_atan2(int y, int x) /* pre scaled for int16 */ { - int yabs, angle, pi4=(1<<12); // note pi = 1<<14 + int yabs, angle; + int pi4=(1<<12), pi34=3*(1<<12); // note pi = 1<<14 if (x==0 && y==0) { return 0; } @@ -194,9 +275,9 @@ int fast_atan2(int y, int x) yabs = -yabs; } if (x >= 0) { - angle = pi4 - pi4 * (x-yabs) / (x+yabs); + angle = pi4 - pi4 * (x-yabs) / (x+yabs); } else { - angle = 3*pi4 - pi4 * (x+yabs) / (yabs-x); + angle = pi34 - pi4 * (x+yabs) / (yabs-x); } if (y < 0) { return -angle; @@ -204,14 +285,11 @@ int fast_atan2(int y, int x) return angle; } -int polar_discriminant(int ar, int aj, int br, int bj) +int polar_disc_fast(int ar, int aj, int br, int bj) { int cr, cj; - double angle; multiply(ar, aj, br, -bj, &cr, &cj); - angle = atan2((double)cj, (double)cr); - return (int)(angle / 3.14159 * (1<<14)); - //return fast_atan2(cj, cr); + return fast_atan2(cj, cr); } void fm_demod(struct fm_state *fm) @@ -221,8 +299,13 @@ void fm_demod(struct fm_state *fm) fm->pre_r, fm->pre_j); fm->signal2[0] = (int16_t)pcm; for (i = 2; i < (fm->signal_len); i += 2) { - pcm = polar_discriminant(fm->signal[i], fm->signal[i+1], - fm->signal[i-2], fm->signal[i-1]); + if (fm->custom_atan) { + pcm = polar_disc_fast(fm->signal[i], fm->signal[i+1], + fm->signal[i-2], fm->signal[i-1]); + } else { + pcm = polar_discriminant(fm->signal[i], fm->signal[i+1], + fm->signal[i-2], fm->signal[i-1]); + } fm->signal2[i/2] = (int16_t)pcm; } fm->pre_r = fm->signal[fm->signal_len - 2]; @@ -281,13 +364,17 @@ static void optimal_settings(struct fm_state *fm, int freq, int hopping) r = rtlsdr_set_center_freq(dev, (uint32_t)capture_freq); if (hopping) { return;} - fprintf(stderr, "Oversampling by: %ix.\n", fm->downsample); + fprintf(stderr, "Oversampling input by: %ix.\n", fm->downsample); + fprintf(stderr, "Oversampling output by: %ix.\n", fm->post_downsample); + fprintf(stderr, "Buffer size: %0.2fms\n", + 1000 * 0.5 * (float)DEFAULT_BUF_LENGTH / (float)capture_rate); if (r < 0) { fprintf(stderr, "WARNING: Failed to set center freq.\n");} else { fprintf(stderr, "Tuned to %u Hz.\n", capture_freq);} /* Set the sample rate */ + fprintf(stderr, "Sampling at %u Hz.\n", capture_rate); r = rtlsdr_set_sample_rate(dev, (uint32_t)capture_rate); if (r < 0) { fprintf(stderr, "WARNING: Failed to set sample rate.\n");} @@ -298,9 +385,15 @@ void full_demod(unsigned char *buf, uint32_t len, struct fm_state *fm) { int sr, freq_next; rotate_90(buf, len); - low_pass(fm, buf, len); + if (fm->fir_enable) { + low_pass_fir(fm, buf, len); + } else { + low_pass(fm, buf, len); + } fm_demod(fm); sr = post_squelch(fm); + if (fm->post_downsample > 1) { + fm->signal_len = low_pass_simple(fm->signal2, fm->signal_len, fm->post_downsample);} /* ignore under runs for now */ fwrite(fm->signal2, 2, fm->signal_len/2, fm->file); if (fm->freq_len > 1 && !sr && fm->squelch_hits > CONSEQ_SQUELCH) { @@ -362,9 +455,13 @@ int main(int argc, char **argv) fm.squelch_level = 150; fm.freq_len = 0; fm.edge = 0; + fm.fir_enable = 0; + fm.prev_index = -1; + fm.post_downsample = 1; + fm.custom_atan = 0; sem_init(&data_ready, 0, 0); #ifndef _WIN32 - while ((opt = getopt(argc, argv, "d:f:g:s:b:l:E::")) != -1) { + while ((opt = getopt(argc, argv, "d:f:g:s:b:l:o:EFA")) != -1) { switch (opt) { case 'd': dev_index = atoi(optarg); @@ -382,14 +479,25 @@ int main(int argc, char **argv) case 's': fm.sample_rate = (uint32_t)atof(optarg); break; + case 'o': + fm.post_downsample = (int)atof(optarg); + break; case 'E': fm.edge = 1; break; + case 'F': + fm.fir_enable = 1; + break; + case 'A': + fm.custom_atan = 1; + break; default: usage(); break; } } + /* double sample_rate to limit to Δθ to ±π */ + fm.sample_rate *= fm.post_downsample; if (argc <= optind) { usage(); @@ -443,6 +551,7 @@ int main(int argc, char **argv) #endif optimal_settings(&fm, 0, 0); + build_fir(&fm); /* Set the tuner gain */ r = rtlsdr_set_tuner_gain(dev, gain);