mirror of
https://github.com/rtlsdrblog/rtl-sdr-blog.git
synced 2025-01-11 18:57:19 +01:00
add FC0012 driver
Thanks to David Badsen! Signed-off-by: Steve Markgraf <steve@steve-m.de>
This commit is contained in:
parent
4ad93906a4
commit
367113b5c8
25
include/tuner_fc0012.h
Normal file
25
include/tuner_fc0012.h
Normal file
@ -0,0 +1,25 @@
|
||||
#ifndef __TUNER_FC0012_H
|
||||
#define __TUNER_FC0012_H
|
||||
|
||||
#define FC0012_OK 0
|
||||
#define FC0012_ERROR 1
|
||||
|
||||
#define FC0012_I2C_ADDR 0xc6
|
||||
#define FC0012_CHECK_ADDR 0x00
|
||||
#define FC0012_CHECK_VAL 0xa1
|
||||
|
||||
#define FC0012_BANDWIDTH_6MHZ 6
|
||||
#define FC0012_BANDWIDTH_7MHZ 7
|
||||
#define FC0012_BANDWIDTH_8MHZ 8
|
||||
|
||||
#define FC0012_LNA_GAIN_LOW 0x00
|
||||
#define FC0012_LNA_GAIN_MID 0x08
|
||||
#define FC0012_LNA_GAIN_HI 0x17
|
||||
#define FC0012_LNA_GAIN_MAX 0x10
|
||||
|
||||
int FC0012_Open(void *pTuner);
|
||||
int FC0012_Read(void *pTuner, unsigned char RegAddr, unsigned char *pByte);
|
||||
int FC0012_Write(void *pTuner, unsigned char RegAddr, unsigned char Byte);
|
||||
int FC0012_SetFrequency(void *pTuner, unsigned long Frequency, unsigned short Bandwidth);
|
||||
|
||||
#endif
|
@ -7,7 +7,7 @@ AM_CFLAGS = -fPIC -Wall
|
||||
|
||||
lib_LTLIBRARIES = librtlsdr.la
|
||||
|
||||
librtlsdr_la_SOURCES = rtl-sdr.c tuner_e4000.c tuner_fc0013.c
|
||||
librtlsdr_la_SOURCES = rtl-sdr.c tuner_e4000.c tuner_fc0012.c tuner_fc0013.c
|
||||
librtlsdr_la_LDFALGS = -version-info $(LIBVERSION)
|
||||
|
||||
bin_PROGRAMS = rtl_sdr
|
||||
|
@ -27,6 +27,7 @@
|
||||
#include <libusb.h>
|
||||
|
||||
#include "tuner_e4000.h"
|
||||
#include "tuner_fc0012.h"
|
||||
#include "tuner_fc0013.h"
|
||||
|
||||
typedef struct rtlsdr_tuner {
|
||||
@ -47,10 +48,17 @@ int e4k_tune(void *dev, int freq) { return e4000_SetRfFreqHz(dev, freq); }
|
||||
int e4k_set_bw(void *dev, int bw) { return e4000_SetBandwidthHz(dev, 8000000); }
|
||||
int e4k_set_gain(void *dev, int gain) { return 0; }
|
||||
|
||||
int fc0012_init(void *dev) { return 0; }
|
||||
int fc0012_init(void *dev) { return FC0012_Open(dev); }
|
||||
int fc0012_exit(void *dev) { return 0; }
|
||||
int fc0012_tune(void *dev, int freq) { return 0; }
|
||||
int fc0012_set_bw(void *dev, int bw) { return 0; }
|
||||
int fc0012_tune(void *dev, int freq) {
|
||||
/* TODO set GPIO6 accordingly */
|
||||
unsigned int bw = 6;
|
||||
return FC0012_SetFrequency(dev, freq/1000, bw & 0xff);
|
||||
}
|
||||
int fc0012_set_bw(void *dev, int bw) {
|
||||
unsigned long freq = ((rtlsdr_tuner_t *)dev)->freq;
|
||||
return FC0013_SetFrequency(dev, freq/1000, bw/1000000);
|
||||
}
|
||||
int fc0012_set_gain(void *dev, int gain) { return 0; }
|
||||
|
||||
int fc0013_init(void *dev) { return FC0013_Open(dev); }
|
||||
@ -559,9 +567,6 @@ const char *rtlsdr_get_device_name(uint32_t index)
|
||||
}
|
||||
|
||||
/* TODO: put those defines in the tuner header once the drivers are added */
|
||||
#define FC0012_I2C_ADDR 0xc6
|
||||
#define FC0012_CHECK_ADDR 0x00
|
||||
#define FC0012_CHECK_VAL 0xa1
|
||||
|
||||
#define FC2580_I2C_ADDR 0xac
|
||||
#define FC2580_CHECK_ADDR 0x01
|
||||
|
310
src/tuner_fc0012.c
Normal file
310
src/tuner_fc0012.c
Normal file
@ -0,0 +1,310 @@
|
||||
/*
|
||||
* fc0012 tuner support for rtl-sdr
|
||||
*
|
||||
* Based on tuner_fc0012.c found as part of the (seemingly GPLed)
|
||||
* rtl2832u Linux DVB driver.
|
||||
*
|
||||
* Rewritten and hacked into rtl-sdr by David Basden <davidb-sdr@rcpt.to>
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#include "tuner_fc0012.h"
|
||||
#include "i2c.h"
|
||||
|
||||
#define CRYSTAL_FREQ 28800000
|
||||
|
||||
#define FC0012_LNAGAIN FC0012_LNA_GAIN_HI
|
||||
|
||||
/* Incomplete list of register settings:
|
||||
*
|
||||
* Name Reg Bits Desc
|
||||
* LNA_POWER_DOWN 0x06 0 Set to 1 to switch off low noise amp
|
||||
* VCO_SPEED 0x06 3 Set the speed of the VCO. example
|
||||
* driver hardcodes to 1 for some reason
|
||||
* BANDWIDTH 0x06 6-7 Set bandwidth. 6MHz = 0x80, 7MHz=0x40
|
||||
* 8MHz=0x00
|
||||
* XTAL_SPEED 0x07 5 Set to 1 for 28.8MHz Crystal input
|
||||
* or 0 for 36MHz
|
||||
* EN_CAL_RSSI 0x09 4 Enable calibrate RSSI
|
||||
* (Receive Signal Strength Indicator)
|
||||
* LNA_FORCE 0x0d 0
|
||||
* AGC_FORCE 0x0d ?
|
||||
* LNA_GAIN 0x13 0-4 Low noise amp gain
|
||||
* LNA_COMPS 0x15 3 ?
|
||||
* VCO_CALIB 0x0e 7 Set high then low to calibrate VCO
|
||||
*
|
||||
*/
|
||||
|
||||
/* glue functions to rtl-sdr code */
|
||||
int FC0012_Write(void *pTuner, unsigned char RegAddr, unsigned char Byte)
|
||||
{
|
||||
uint8_t data[2];
|
||||
|
||||
data[0] = RegAddr;
|
||||
data[1] = Byte;
|
||||
|
||||
if (rtlsdr_i2c_write((rtlsdr_dev_t *)pTuner, FC0012_I2C_ADDR, data, 2) < 0)
|
||||
return FC0012_ERROR;
|
||||
|
||||
return FC0012_OK;
|
||||
}
|
||||
|
||||
int FC0012_Read(void *pTuner, unsigned char RegAddr, unsigned char *pByte)
|
||||
{
|
||||
uint8_t data = RegAddr;
|
||||
|
||||
if (rtlsdr_i2c_write((rtlsdr_dev_t *)pTuner, FC0012_I2C_ADDR, &data, 1) < 0)
|
||||
return FC0012_ERROR;
|
||||
|
||||
if (rtlsdr_i2c_read((rtlsdr_dev_t *)pTuner, FC0012_I2C_ADDR, &data, 1) < 0)
|
||||
return FC0012_ERROR;
|
||||
|
||||
*pByte = data;
|
||||
|
||||
return FC0012_OK;
|
||||
}
|
||||
|
||||
#ifdef DEBUG
|
||||
#define DEBUGF printf
|
||||
#else
|
||||
#define DEBUGF(...) ()
|
||||
#endif
|
||||
#if 0
|
||||
void FC0012_Dump_Registers()
|
||||
{
|
||||
#ifdef DEBUG
|
||||
unsigned char regBuf;
|
||||
int ret;
|
||||
int i;
|
||||
|
||||
DEBUGF("\nFC0012 registers:\n");
|
||||
for (i=0; i<=0x15; ++i)
|
||||
{
|
||||
ret = FC0012_Read(pTuner, i, ®Buf);
|
||||
if (ret) DEBUGF("\nCouldn't read register %02x\n", i);
|
||||
DEBUGF("R%x=%02x ",i,regBuf);
|
||||
}
|
||||
DEBUGF("\n");
|
||||
FC0012_Read(pTuner, 0x06, ®Buf);
|
||||
DEBUGF("LNA_POWER_DOWN:\t%s\n", regBuf & 1 ? "Powered down" : "Not Powered Down");
|
||||
DEBUGF("VCO_SPEED:\t%s\n", regBuf & 0x8 ? "High speed" : "Slow speed");
|
||||
DEBUGF("Bandwidth:\t%s\n", (regBuf & 0xC) ? "8MHz" : "less than 8MHz");
|
||||
FC0012_Read(pTuner, 0x07, ®Buf);
|
||||
DEBUGF("Crystal Speed:\t%s\n", (regBuf & 0x20) ? "28.8MHz" : "36MHZ<!>");
|
||||
FC0012_Read(pTuner, 0x09, ®Buf);
|
||||
DEBUGF("RSSI calibration mode:\t%s\n", (regBuf & 0x10) ? "RSSI CALIBRATION IN PROGRESS<!>" : "Disabled");
|
||||
FC0012_Read(pTuner, 0x0d, ®Buf);
|
||||
DEBUGF("LNA Force:\t%s\n", (regBuf & 0x1) ? "Forced" : "Not Forced");
|
||||
FC0012_Read(pTuner, 0x13, ®Buf);
|
||||
DEBUGF("LNA Gain:\t");
|
||||
switch (regBuf) {
|
||||
case (0x10): DEBUGF("19.7dB\n"); break;
|
||||
case (0x17): DEBUGF("17.9dB\n"); break;
|
||||
case (0x08): DEBUGF("7.1dB\n"); break;
|
||||
case (0x02): DEBUGF("-9.9dB\n"); break;
|
||||
default: DEBUGF("unknown gain value 0x02x\n");
|
||||
}
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
|
||||
int FC0012_Open(void *pTuner)
|
||||
{
|
||||
// DEBUGF("FC0012_Open start");
|
||||
if (FC0012_Write(pTuner, 0x01, 0x05)) return -1;
|
||||
if (FC0012_Write(pTuner, 0x02, 0x10)) return -1;
|
||||
if (FC0012_Write(pTuner, 0x03, 0x00)) return -1;
|
||||
if (FC0012_Write(pTuner, 0x04, 0x00)) return -1;
|
||||
if (FC0012_Write(pTuner, 0x05, 0x0F)) return -1;
|
||||
if (FC0012_Write(pTuner, 0x06, 0x00)) return -1; // divider 2, VCO slow
|
||||
if (FC0012_Write(pTuner, 0x07, 0x20)) return -1; // change to 0x00 for a 36MHz crystal
|
||||
if (FC0012_Write(pTuner, 0x08, 0xFF)) return -1; // AGC Clock divide by 254, AGC gain 1/256, Loop Bw 1/8
|
||||
if (FC0012_Write(pTuner, 0x09, 0x6E)) return -1; // Disable LoopThrough
|
||||
if (FC0012_Write(pTuner, 0x0A, 0xB8)) return -1; // Disable LO Test Buffer
|
||||
if (FC0012_Write(pTuner, 0x0B, 0x82)) return -1; // Output Clock is same as clock frequency
|
||||
//if (FC0012_Write(pTuner, 0x0C, 0xF8)) return -1;
|
||||
if (FC0012_Write(pTuner, 0x0C, 0xFC)) return -1; // AGC up-down mode
|
||||
if (FC0012_Write(pTuner, 0x0D, 0x02)) return -1; // AGC Not Forcing & LNA Forcing
|
||||
if (FC0012_Write(pTuner, 0x0E, 0x00)) return -1;
|
||||
if (FC0012_Write(pTuner, 0x0F, 0x00)) return -1;
|
||||
if (FC0012_Write(pTuner, 0x10, 0x00)) return -1;
|
||||
if (FC0012_Write(pTuner, 0x11, 0x00)) return -1;
|
||||
if (FC0012_Write(pTuner, 0x12, 0x1F)) return -1; // Set to maximum gain
|
||||
if (FC0012_Write(pTuner, 0x13, FC0012_LNAGAIN)) return -1;
|
||||
if (FC0012_Write(pTuner, 0x14, 0x00)) return -1;
|
||||
if (FC0012_Write(pTuner, 0x15, 0x04)) return -1; // Enable LNA COMPS
|
||||
|
||||
/* Black magic from nim_rtl2832_fc0012.c in DVB driver.
|
||||
Even though we've set 0x11 to 0x00 above, this needs to happen to have
|
||||
it go back
|
||||
*/
|
||||
if (FC0012_Write(pTuner, 0x0d, 0x02)) return -1;
|
||||
if (FC0012_Write(pTuner, 0x11, 0x00)) return -1;
|
||||
if (FC0012_Write(pTuner, 0x15, 0x04)) return -1;
|
||||
|
||||
// DEBUGF("FC0012_Open SUCCESS");
|
||||
return FC0012_OK;
|
||||
}
|
||||
|
||||
# if 0
|
||||
// Frequency is in kHz. Bandwidth is in MHz
|
||||
// This is pseudocode to set GPIO6 for VHF/UHF filter switching.
|
||||
// Trying to do this in reality leads to fail currently. I'm probably doing it wrong.
|
||||
void FC0012_Frequency_Control(unsigned int Frequency, unsigned short Bandwidth)
|
||||
{
|
||||
if( Frequency < 260000 && Frequency > 150000 )
|
||||
{
|
||||
// set GPIO6 = low
|
||||
|
||||
// 1. Set tuner frequency
|
||||
// 2. if the program quality is not good enough, switch to frequency + 500kHz
|
||||
// 3. if the program quality is still no good, switch to frequency - 500kHz
|
||||
}
|
||||
else
|
||||
{
|
||||
// set GPIO6 = high
|
||||
|
||||
// set tuner frequency
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
int FC0012_SetFrequency(void *pTuner, unsigned long Frequency, unsigned short Bandwidth)
|
||||
{
|
||||
int VCO1 = 0;
|
||||
unsigned long doubleVCO;
|
||||
unsigned short xin, xdiv;
|
||||
unsigned char reg[21], am, pm, multi;
|
||||
unsigned char read_byte;
|
||||
|
||||
unsigned long CrystalFreqKhz;
|
||||
|
||||
// DEBUGF("FC0012_SetFrequency start");
|
||||
|
||||
CrystalFreqKhz = (CRYSTAL_FREQ + 500) / 1000;
|
||||
|
||||
//===================================== Select frequency divider and the frequency of VCO
|
||||
if (Frequency * 96 < 3560000)
|
||||
{
|
||||
multi = 96; reg[5] = 0x82; reg[6] = 0x00;
|
||||
}
|
||||
else if (Frequency * 64 < 3560000)
|
||||
{
|
||||
multi = 64; reg[5] = 0x82; reg[6] = 0x02;
|
||||
}
|
||||
else if (Frequency * 48 < 3560000)
|
||||
{
|
||||
multi = 48; reg[5] = 0x42; reg[6] = 0x00;
|
||||
}
|
||||
else if (Frequency * 32 < 3560000)
|
||||
{
|
||||
multi = 32; reg[5] = 0x42; reg[6] = 0x02;
|
||||
}
|
||||
else if (Frequency * 24 < 3560000)
|
||||
{
|
||||
multi = 24; reg[5] = 0x22; reg[6] = 0x00;
|
||||
}
|
||||
else if (Frequency * 16 < 3560000)
|
||||
{
|
||||
multi = 16; reg[5] = 0x22; reg[6] = 0x02;
|
||||
}
|
||||
else if (Frequency * 12 < 3560000)
|
||||
{
|
||||
multi = 12; reg[5] = 0x12; reg[6] = 0x00;
|
||||
}
|
||||
else if (Frequency * 8 < 3560000)
|
||||
{
|
||||
multi = 8; reg[5] = 0x12; reg[6] = 0x02;
|
||||
}
|
||||
else if (Frequency * 6 < 3560000)
|
||||
{
|
||||
multi = 6; reg[5] = 0x0A; reg[6] = 0x00;
|
||||
}
|
||||
else
|
||||
{
|
||||
multi = 4; reg[5] = 0x0A; reg[6] = 0x02;
|
||||
}
|
||||
|
||||
doubleVCO = Frequency * multi;
|
||||
|
||||
reg[6] = reg[6] | 0x08;
|
||||
VCO1 = 1;
|
||||
xdiv = (unsigned short)(doubleVCO / (CrystalFreqKhz / 2));
|
||||
if( (doubleVCO - xdiv * (CrystalFreqKhz / 2)) >= (CrystalFreqKhz / 4) )
|
||||
xdiv = xdiv + 1;
|
||||
|
||||
pm = (unsigned char)( xdiv / 8 );
|
||||
am = (unsigned char)( xdiv - (8 * pm));
|
||||
|
||||
if (am < 2) {
|
||||
reg[1] = am + 8;
|
||||
reg[2] = pm - 1;
|
||||
} else {
|
||||
reg[1] = am;
|
||||
reg[2] = pm;
|
||||
}
|
||||
|
||||
// From VCO frequency determines the XIN ( fractional part of Delta Sigma PLL) and divided value (XDIV).
|
||||
xin = (unsigned short)(doubleVCO - ((unsigned short)(doubleVCO / (CrystalFreqKhz / 2))) * (CrystalFreqKhz / 2));
|
||||
xin = ((xin << 15)/(unsigned short)(CrystalFreqKhz / 2));
|
||||
if( xin >= (unsigned short) 16384 )
|
||||
xin = xin + (unsigned short) 32768;
|
||||
|
||||
reg[3] = (unsigned char)(xin >> 8);
|
||||
reg[4] = (unsigned char)(xin & 0x00FF);
|
||||
|
||||
// DEBUGF("Frequency: %lu, Fa: %d, Fp: %d, Xin:%d \n", Frequency, am, pm, xin);
|
||||
|
||||
switch(Bandwidth)
|
||||
{
|
||||
case 6: reg[6] = 0x80 | reg[6]; break;
|
||||
case 7: reg[6] = (~0x80 & reg[6]) | 0x40; break;
|
||||
case 8: default: reg[6] = ~0xC0 & reg[6]; break;
|
||||
}
|
||||
|
||||
if (FC0012_Write(pTuner, 0x01, reg[1])) return -1;
|
||||
if (FC0012_Write(pTuner, 0x02, reg[2])) return -1;
|
||||
if (FC0012_Write(pTuner, 0x03, reg[3])) return -1;
|
||||
if (FC0012_Write(pTuner, 0x04, reg[4])) return -1;
|
||||
//reg[5] = reg[5] | 0x07; // This is really not cool. Why is it there?
|
||||
// Same with hardcoding VCO=1
|
||||
if (FC0012_Write(pTuner, 0x05, reg[5])) return -1;
|
||||
if (FC0012_Write(pTuner, 0x06, reg[6])) return -1;
|
||||
|
||||
// VCO Calibration
|
||||
if (FC0012_Write(pTuner, 0x0E, 0x80)) return -1;
|
||||
if (FC0012_Write(pTuner, 0x0E, 0x00)) return -1;
|
||||
|
||||
// VCO Re-Calibration if needed
|
||||
if (FC0012_Write(pTuner, 0x0E, 0x00)) return -1;
|
||||
if (FC0012_Read(pTuner, 0x0E, &read_byte)) return -1;
|
||||
reg[14] = 0x3F & read_byte;
|
||||
|
||||
if (VCO1)
|
||||
{
|
||||
if (reg[14] > 0x3C)
|
||||
{
|
||||
reg[6] = 0x08 | reg[6];
|
||||
|
||||
if (FC0012_Write(pTuner, 0x06, reg[6])) return -1;
|
||||
if (FC0012_Write(pTuner, 0x0E, 0x80)) return -1;
|
||||
if (FC0012_Write(pTuner, 0x0E, 0x00)) return -1;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if (reg[14] < 0x02) {
|
||||
reg[6] = 0x08 | reg[6];
|
||||
|
||||
if (FC0012_Write(pTuner, 0x06, reg[6])) return -1;
|
||||
if (FC0012_Write(pTuner, 0x0E, 0x80)) return -1;
|
||||
if (FC0012_Write(pTuner, 0x0E, 0x00)) return -1;
|
||||
}
|
||||
}
|
||||
|
||||
// DEBUGF("FC0012_SetFrequency SUCCESS"); FC0012_Dump_Registers();
|
||||
return FC0012_OK;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user