FFmpeg is a powerful tool for manipulating audiovisual files. Unfortunately, it also has a steep learning curve, especially for users unfamiliar with a command line interface. This app helps users through the command generation process so that more people can reap the benefits of FFmpeg.
Each button displays helpful information about how to perform a wide variety of tasks using FFmpeg. To use this site, click on the task you would like to perform. A new window will open up with a sample command and a description of how that command works. You can copy this command and understand how the command works with a breakdown of each of the flags.
For FFmpeg basics, check out the program’s official website.
For Bash and command line basics, try the Command Line Crash Course.
Create high quality GIF
ffmpeg -ss HH:MM:SS -i input_file -filter_complex "fps=10,scale=500:-1:flags=lanczos,palettegen" -t 3 palette.png
ffmpeg -ss HH:MM:SS -i input_file -i palette.png -filter_complex "[0:v]fps=10,scale=500:-1:flags=lanczos[v],[v][1:v]paletteuse" -t 3 -loop 6 output_file
The first command will use the palettegen filter to create a custom palette, then the second command will create the GIF with the paletteuse filter. The result is a high quality GIF.
Simpler GIF creation
ffmpeg -ss HH:MM:SS -i input_file -vf "fps=10,scale=500:-1" -t 3 -loop 6 output_file
This is a quick and easy method. Dithering is more apparent than the above method using the palette* filters, but the file size will be smaller. Perfect for that "legacy" GIF look.
ffmpeg -i input_file.wav -write_id3v1 1 -id3v2_version 3 -dither_method modified_e_weighted -out_sample_rate 48k -b:a 320k output_file.mp3
This will convert your WAV files to MP3s.
for f in *.MXF; do ffmpeg -i "$f" -map 0 -c copy "${f%.MXF}.mov"; done
Re-wrap .MFX files in a specified directory to .mov files by using this code within a .sh file. The shell script (.sh file) and all MXF files must be contained in the same directory, and the script must be run from the directory itself (cd ~/Desktop/MXF_file_directory). Execute .sh file with the command sh Rewrap-MXF.sh
Modify the ffmpeg script as needed to perform different transcodes :)
ffmpeg -i input_file -f framemd5 -an output_file
This will create an MD5 checksum per video frame.
ffmpeg -i input_file -c:v prores -profile:v 1 -vf yadif -c:a pcm_s16le output_file.mov
This command transcodes an input file into a deinterlaced Apple ProRes 422 LT file with 16-bit linear PCM encoded audio. The file is deinterlaced using the yadif filter (Yet Another De-Interlacing Filter).
ffmpeg -i input_file -ss 00:00:20 -vframes 1 thumb.png
This command will grab a thumbnail 20 seconds into the video.
ffmpeg -i input_file -vf fps=1/60 out%d.png
This will grab a thumbnail every minute and output sequential png files.
ffmpeg -i input_file -ss 00:12.235 -i "$f" -vframes 1 output_file
Create one thumbnail in JPEG format from a video file at a specific time. In this example: 0hours:0minutes:12sec.235msec
ffprobe -i input_file -show_format -show_streams -show_data -print_format xml
This command extracts technical metadata from a video file and displays it in xml.
ffmpeg documentation on ffprobe (full list of flags, commands, www.ffmpeg.org/ffprobe.html)
ffmpeg -f concat -i mylist.txt -c copy output_file
This command takes two or more files of the same file type and joins them together to make a single file. All that the program needs is a text file with a list specifying the files that should be joined. However, it only works properly if the files to be combined have the exact same codec and technical specifications. Be careful, ffmpeg may appear to have successfully joined two video files with different codecs, but may only bring over the audio from the second file or have other weird behaviors. Don’t use this command for joining files with different codecs and technical specs and always preview your resulting video file!
ffmpeg documentation on concatenating files (full list of flags, commands, https://trac.ffmpeg.org/wiki/Concatenate)
path_name_and_extension_to_the_first_file path_name_and_extension_to_the_second_file . . . path_name_and_extension_to_the_last_file
ffmpeg -i input_file -t 5 -c copy output_file
This command captures a certain portion of a video file, starting from the beginning and continuing for the amount of time (in seconds) specified in the script. This can be used to create a preview file, or to remove unwanted content from the end of the file. To be more specific, use timecode, such as 00:00:05.
ffmpeg -i input_file -ss 5 -t 10 -c copy output_file
This command captures a certain portion of a video file, starting from a designated point in the file and taking an excerpt as long as the amount of time (in seconds) specified in the script. This can be used to create a preview or clip out a desired segment. To be more specific, use timecode, such as 00:00:05.
ffmpeg -i input_file -ss 5 -c copy output_file
This command copies a video file starting from a specified time, removing the first few seconds from the output. This can be used to create an excerpt, or remove unwanted content from the beginning of a video file.
ffmpeg -i input_file -map 0:v video_output_file -map 0:a audio_output_file
This command splits the original input file into a video and audio stream. The -map command identifies which streams are mapped to which file. To ensure that you’re mapping the right streams to the right file, run ffprobe before writing the script to identify which streams are desired.
ffmpeg -i input_file -c:v libx264 -c:a copy output_file
This command takes an input file and transcodes it to H.264 with an .mp4 wrapper, keeping the audio the same codec as the original. The libx264 codec defaults to a “medium” preset for compression quality and a CRF of 23. CRF stands for constant rate factor and determines the quality and file size of the resulting H.264 video. A low CRF means high quality and large file size; a high CRF means the opposite.
In order to use the same basic command to make a higher quality file, you can add some of these presets:
ffmpeg -i input_file -c:v libx264 -preset veryslow -crf 18 -c:a copy output_file
libx264 will use a chroma subsampling scheme that is the closest match to that of the input. This can result in YUV 4:2:0, 4:2:2, or 4:4:4 chroma subsampling. QuickTime and most other non-FFmpeg based players can’t decode H.264 files that are not 4:2:0. In order to allow the video to play in all players, you can specify 4:2:0 chroma subsampling:
ffmpeg -i input_file -c:v libx264 -pix_fmt yuv420p -preset veryslow -crf 18 -c:a copy output_file
ffmpeg -i input_video_file.mxf -i input_audio_file.mxf -c:v libx264 -pix_fmt yuv420p -c:a copy output_file
This will transcode mxf wrapped video and audio files to an H.264 encoded .mp4 file. Please note this only works for non-encrypted DCPs.
Create an ISO file that can be used to burn a DVD. Please note, you will have to install dvdauthor. To install dvd author using Homebrew run: brew install dvdauthor
ffmpeg -i input_file -aspect 4:3 -target ntsc-dvd output_file.mpg
This command will take any file and create an MPEG file that dvdauthor can use to create an ISO.
ffmpeg -i input_file -c:v libx264 -filter:v "yadif,scale=1440:1080:flags=lanczos,pad=1920:1080:(ow-iw)/2:(oh-ih)/2,format=yuv420p" output_file
Transform a video file with 4:3 aspect ratio into a video file with 16:9 aspect ration by correct pillarboxing.
ffmpeg -i input_file -filter:v "pad=ih*16/9:ih:(ow-iw)/2:(oh-ih)/2" -c:a copy output_file
-c:a copy
by -an
.Transform a video file with 16:9 aspect ratio into a video file with 4:3 aspect ration by correct letterboxing.
ffmpeg -i input_file -filter:v "pad=iw:iw*3/4:(ow-iw)/2:(oh-ih)/2" -c:a copy output_file
-c:a copy
by -an
.ffmpeg -i input_file -filter:v "hflip,vflip" -c:a copy output_file
-c:a copy
by -an
.E.g. for converting 24fps to 25fps with audio pitch compensation for PAL access copies. (Thanks @kieranjol!)
ffmpeg -i input_file -filter_complex "[0:v]setpts=input_fps/output_fps*PTS[v]; [0:a]atempo=output_fps/input_fps[a]" -map "[v]" -map "[a]" output_file
setpts
video filter modifies the PTS (presentation time stamp) of the video stream, and the atempo
audio filter modifies the speed of the audio stream while keeping the same sound pitch. Note that the parameter’s order for the image and for the sound are inverted:
setpts
the numerator input_fps
sets the input speed and the denominator output_fps
sets the output speed; both values are given in frames per second.atempo
the numerator output_fps
sets the output speed and the denominator input_fps
sets the input speed; both values are given in frames per second.E.g For creating access copies with your institutions name
ffmpeg -i input_file -vf drawtext="fontfile=font_path:fontsize=font_size:text=watermark_text:fontcolor=font_colour:alpha=0.4:x=(w-text_w)/2:y=(h-text_h)/2" output_file
fontfile=/Library/Fonts/AppleGothic.ttf
35
is a good starting point for SD. Ideally this value is proportional to video size, for example use ffprobe to acquire video height and divide by 14.text='FFMPROVISR EXAMPLE TEXT'
fontcolor=white
or a hexadecimal value such as fontcolor=0xFFFFFF
-vf
is a shortcut for -filter:v
.ffmpeg -i input_file -vf drawtext="fontfile=font_path:fontsize=font_size:timecode=starting_timecode:fontcolor=font_colour:box=1 :boxcolor=box_colour:rate=timecode_rate:x=(w-text_w)/2:y=h/1.2" output_file
fontfile=/Library/Fonts/AppleGothic.ttf
35
is a good starting point for SD. Ideally this value is proportional to video size, for example use ffprobe to acquire video height and divide by 14.hh:mm:ss[:;.]ff
. Colon escaping is determined by O.S, for example in Ubuntu timecode='09\\:50\\:01\\:23'
. Ideally, this value would be generated from the file itself using ffprobe.fontcolor=white
or a hexadecimal value such as fontcolor=0xFFFFFF
fontcolor=black
or a hexadecimal value such as fontcolor=0x000000
25/1
-vf
is a shortcut for -filter:v
.ffmpeg -i input_file -f null -
This decodes your video and displays any crc checksum mismatches. These errors will display in your terminal like this: [ffv1 @ 0x1b04660] CRC mismatch 350FBD8A!at 0.272000 seconds
Frame crcs are enabled by default in FFv1 Version 3.
null
muxer. This allows video decoding without creating an output file.-
is just a place holder. No file is actually created. ffmpeg -f image2 -i input_file_%06d.ext -c:v v210 -an output_file
-start_number 086400
before -i input_file_%06d.ext
. The extension for TIFF files is .tif or maybe .tiff; the extension for DPX files is .dpx (or eventually .cin for old files).Made with ♥ at AMIA #AVhack15! Contribute to the project via our GitHub page!