SDRPlusPlus/core/src/dsp/demodulator.h
2021-07-23 16:18:47 +02:00

729 lines
26 KiB
C++

#pragma once
#include <dsp/block.h>
#include <volk/volk.h>
#include <dsp/filter.h>
#include <dsp/processing.h>
#include <dsp/routing.h>
#include <spdlog/spdlog.h>
#include <dsp/pll.h>
#include <dsp/clock_recovery.h>
#include <dsp/math.h>
#include <dsp/convertion.h>
#include <dsp/audio.h>
#include <dsp/stereo_fm.h>
#define FAST_ATAN2_COEF1 FL_M_PI / 4.0f
#define FAST_ATAN2_COEF2 3.0f * FAST_ATAN2_COEF1
inline float fast_arctan2(float y, float x) {
float abs_y = fabsf(y);
float r, angle;
if (x == 0.0f && y == 0.0f) { return 0.0f; }
if (x>=0.0f) {
r = (x - abs_y) / (x + abs_y);
angle = FAST_ATAN2_COEF1 - FAST_ATAN2_COEF1 * r;
}
else {
r = (x + abs_y) / (abs_y - x);
angle = FAST_ATAN2_COEF2 - FAST_ATAN2_COEF1 * r;
}
if (y < 0.0f) {
return -angle;
}
return angle;
}
namespace dsp {
class FloatFMDemod : public generic_block<FloatFMDemod> {
public:
FloatFMDemod() {}
FloatFMDemod(stream<complex_t>* in, float sampleRate, float deviation) { init(in, sampleRate, deviation); }
void init(stream<complex_t>* in, float sampleRate, float deviation) {
_in = in;
_sampleRate = sampleRate;
_deviation = deviation;
phasorSpeed = (2 * FL_M_PI) / (_sampleRate / _deviation);
generic_block<FloatFMDemod>::registerInput(_in);
generic_block<FloatFMDemod>::registerOutput(&out);
generic_block<FloatFMDemod>::_block_init = true;
}
void setInput(stream<complex_t>* in) {
assert(generic_block<FloatFMDemod>::_block_init);
std::lock_guard<std::mutex> lck(generic_block<FloatFMDemod>::ctrlMtx);
generic_block<FloatFMDemod>::tempStop();
generic_block<FloatFMDemod>::unregisterInput(_in);
_in = in;
generic_block<FloatFMDemod>::registerInput(_in);
generic_block<FloatFMDemod>::tempStart();
}
void setSampleRate(float sampleRate) {
assert(generic_block<FloatFMDemod>::_block_init);
std::lock_guard<std::mutex> lck(generic_block<FloatFMDemod>::ctrlMtx);
generic_block<FloatFMDemod>::tempStop();
_sampleRate = sampleRate;
phasorSpeed = (2 * FL_M_PI) / (_sampleRate / _deviation);
generic_block<FloatFMDemod>::tempStart();
}
float getSampleRate() {
assert(generic_block<FloatFMDemod>::_block_init);
return _sampleRate;
}
void setDeviation(float deviation) {
assert(generic_block<FloatFMDemod>::_block_init);
std::lock_guard<std::mutex> lck(generic_block<FloatFMDemod>::ctrlMtx);
generic_block<FloatFMDemod>::tempStop();
_deviation = deviation;
phasorSpeed = (2 * FL_M_PI) / (_sampleRate / _deviation);
generic_block<FloatFMDemod>::tempStart();
}
float getDeviation() {
assert(generic_block<FloatFMDemod>::_block_init);
return _deviation;
}
int run() {
int count = _in->read();
if (count < 0) { return -1; }
// This is somehow faster than volk...
float diff, currentPhase;
for (int i = 0; i < count; i++) {
currentPhase = fast_arctan2(_in->readBuf[i].im, _in->readBuf[i].re);
diff = currentPhase - phase;
if (diff > 3.1415926535f) { diff -= 2 * 3.1415926535f; }
else if (diff <= -3.1415926535f) { diff += 2 * 3.1415926535f; }
out.writeBuf[i] = diff / phasorSpeed;
phase = currentPhase;
}
_in->flush();
if (!out.swap(count)) { return -1; }
return count;
}
stream<float> out;
private:
float phase = 0;
float phasorSpeed, _sampleRate, _deviation;
stream<complex_t>* _in;
};
class FMDemod : public generic_block<FMDemod> {
public:
FMDemod() {}
FMDemod(stream<complex_t>* in, float sampleRate, float deviation) { init(in, sampleRate, deviation); }
void init(stream<complex_t>* in, float sampleRate, float deviation) {
_in = in;
_sampleRate = sampleRate;
_deviation = deviation;
phasorSpeed = (2 * FL_M_PI) / (_sampleRate / _deviation);
generic_block<FMDemod>::registerInput(_in);
generic_block<FMDemod>::registerOutput(&out);
generic_block<FMDemod>::_block_init = true;
}
void setInput(stream<complex_t>* in) {
assert(generic_block<FMDemod>::_block_init);
std::lock_guard<std::mutex> lck(generic_block<FMDemod>::ctrlMtx);
generic_block<FMDemod>::tempStop();
generic_block<FMDemod>::unregisterInput(_in);
_in = in;
generic_block<FMDemod>::registerInput(_in);
generic_block<FMDemod>::tempStart();
}
void setSampleRate(float sampleRate) {
assert(generic_block<FMDemod>::_block_init);
std::lock_guard<std::mutex> lck(generic_block<FMDemod>::ctrlMtx);
generic_block<FMDemod>::tempStop();
_sampleRate = sampleRate;
phasorSpeed = (2 * FL_M_PI) / (_sampleRate / _deviation);
generic_block<FMDemod>::tempStart();
}
float getSampleRate() {
assert(generic_block<FMDemod>::_block_init);
return _sampleRate;
}
void setDeviation(float deviation) {
assert(generic_block<FMDemod>::_block_init);
_deviation = deviation;
phasorSpeed = (2 * FL_M_PI) / (_sampleRate / _deviation);
}
float getDeviation() {
assert(generic_block<FMDemod>::_block_init);
return _deviation;
}
int run() {
int count = _in->read();
if (count < 0) { return -1; }
// This is somehow faster than volk...
float diff, currentPhase;
for (int i = 0; i < count; i++) {
currentPhase = fast_arctan2(_in->readBuf[i].im, _in->readBuf[i].re);
diff = currentPhase - phase;
if (diff > 3.1415926535f) { diff -= 2 * 3.1415926535f; }
else if (diff <= -3.1415926535f) { diff += 2 * 3.1415926535f; }
out.writeBuf[i].l = diff / phasorSpeed;
out.writeBuf[i].r = diff / phasorSpeed;
phase = currentPhase;
}
_in->flush();
if (!out.swap(count)) { return -1; }
return count;
}
stream<stereo_t> out;
private:
float phase = 0;
float phasorSpeed, _sampleRate, _deviation;
stream<complex_t>* _in;
};
class AMDemod : public generic_block<AMDemod> {
public:
AMDemod() {}
AMDemod(stream<complex_t>* in) { init(in); }
void init(stream<complex_t>* in) {
_in = in;
generic_block<AMDemod>::registerInput(_in);
generic_block<AMDemod>::registerOutput(&out);
generic_block<AMDemod>::_block_init = true;
}
void setInput(stream<complex_t>* in) {
assert(generic_block<AMDemod>::_block_init);
std::lock_guard<std::mutex> lck(generic_block<AMDemod>::ctrlMtx);
generic_block<AMDemod>::tempStop();
generic_block<AMDemod>::unregisterInput(_in);
_in = in;
generic_block<AMDemod>::registerInput(_in);
generic_block<AMDemod>::tempStart();
}
int run() {
int count = _in->read();
if (count < 0) { return -1; }
volk_32fc_magnitude_32f(out.writeBuf, (lv_32fc_t*)_in->readBuf, count);
_in->flush();
for (int i = 0; i < count; i++) {
out.writeBuf[i] -= avg;
avg += out.writeBuf[i] * 10e-4;
}
if (!out.swap(count)) { return -1; }
return count;
}
stream<float> out;
private:
stream<complex_t>* _in;
float avg = 0;
};
class SSBDemod : public generic_block<SSBDemod> {
public:
SSBDemod() {}
SSBDemod(stream<complex_t>* in, float sampleRate, float bandWidth, int mode) { init(in, sampleRate, bandWidth, mode); }
~SSBDemod() {
if (!generic_block<SSBDemod>::_block_init) { return; }
generic_block<SSBDemod>::stop();
delete[] buffer;
generic_block<SSBDemod>::_block_init = false;
}
enum {
MODE_USB,
MODE_LSB,
MODE_DSB
};
void init(stream<complex_t>* in, float sampleRate, float bandWidth, int mode) {
_in = in;
_sampleRate = sampleRate;
_bandWidth = bandWidth;
_mode = mode;
phase = lv_cmake(1.0f, 0.0f);
switch (_mode) {
case MODE_USB:
phaseDelta = lv_cmake(std::cos((_bandWidth / _sampleRate) * FL_M_PI), std::sin((_bandWidth / _sampleRate) * FL_M_PI));
break;
case MODE_LSB:
phaseDelta = lv_cmake(std::cos(-(_bandWidth / _sampleRate) * FL_M_PI), std::sin(-(_bandWidth / _sampleRate) * FL_M_PI));
break;
case MODE_DSB:
phaseDelta = lv_cmake(1.0f, 0.0f);
break;
}
buffer = new lv_32fc_t[STREAM_BUFFER_SIZE];
generic_block<SSBDemod>::registerInput(_in);
generic_block<SSBDemod>::registerOutput(&out);
generic_block<SSBDemod>::_block_init = true;
}
void setInput(stream<complex_t>* in) {
assert(generic_block<SSBDemod>::_block_init);
std::lock_guard<std::mutex> lck(generic_block<SSBDemod>::ctrlMtx);
generic_block<SSBDemod>::tempStop();
generic_block<SSBDemod>::unregisterInput(_in);
_in = in;
generic_block<SSBDemod>::registerInput(_in);
generic_block<SSBDemod>::tempStart();
}
void setSampleRate(float sampleRate) {
assert(generic_block<SSBDemod>::_block_init);
_sampleRate = sampleRate;
switch (_mode) {
case MODE_USB:
phaseDelta = lv_cmake(std::cos((_bandWidth / _sampleRate) * FL_M_PI), std::sin((_bandWidth / _sampleRate) * FL_M_PI));
break;
case MODE_LSB:
phaseDelta = lv_cmake(std::cos(-(_bandWidth / _sampleRate) * FL_M_PI), std::sin(-(_bandWidth / _sampleRate) * FL_M_PI));
break;
case MODE_DSB:
phaseDelta = lv_cmake(1.0f, 0.0f);
break;
}
}
void setBandWidth(float bandWidth) {
assert(generic_block<SSBDemod>::_block_init);
_bandWidth = bandWidth;
switch (_mode) {
case MODE_USB:
phaseDelta = lv_cmake(std::cos((_bandWidth / _sampleRate) * FL_M_PI), std::sin((_bandWidth / _sampleRate) * FL_M_PI));
break;
case MODE_LSB:
phaseDelta = lv_cmake(std::cos(-(_bandWidth / _sampleRate) * FL_M_PI), std::sin(-(_bandWidth / _sampleRate) * FL_M_PI));
break;
case MODE_DSB:
phaseDelta = lv_cmake(1.0f, 0.0f);
break;
}
}
void setMode(int mode) {
assert(generic_block<SSBDemod>::_block_init);
_mode = mode;
switch (_mode) {
case MODE_USB:
phaseDelta = lv_cmake(std::cos((_bandWidth / _sampleRate) * FL_M_PI), std::sin((_bandWidth / _sampleRate) * FL_M_PI));
break;
case MODE_LSB:
phaseDelta = lv_cmake(std::cos(-(_bandWidth / _sampleRate) * FL_M_PI), std::sin(-(_bandWidth / _sampleRate) * FL_M_PI));
break;
case MODE_DSB:
phaseDelta = lv_cmake(1.0f, 0.0f);
break;
}
}
int run() {
int count = _in->read();
if (count < 0) { return -1; }
volk_32fc_s32fc_x2_rotator_32fc(buffer, (lv_32fc_t*)_in->readBuf, phaseDelta, &phase, count);
volk_32fc_deinterleave_real_32f(out.writeBuf, buffer, count);
_in->flush();
if (!out.swap(count)) { return -1; }
return count;
}
stream<float> out;
private:
int _mode;
float _sampleRate, _bandWidth;
stream<complex_t>* _in;
lv_32fc_t* buffer;
lv_32fc_t phase;
lv_32fc_t phaseDelta;
};
class MSKDemod : public generic_hier_block<MSKDemod> {
public:
MSKDemod() {}
MSKDemod(stream<complex_t>* input, float sampleRate, float deviation, float baudRate, float omegaGain = (0.01*0.01) / 4, float muGain = 0.01f, float omegaRelLimit = 0.005f) {
init(input, sampleRate, deviation, baudRate, omegaGain, muGain, omegaRelLimit);
}
void init(stream<complex_t>* input, float sampleRate, float deviation, float baudRate, float omegaGain = (0.01*0.01) / 4, float muGain = 0.01f, float omegaRelLimit = 0.005f) {
_sampleRate = sampleRate;
_deviation = deviation;
_baudRate = baudRate;
_omegaGain = omegaGain;
_muGain = muGain;
_omegaRelLimit = omegaRelLimit;
demod.init(input, _sampleRate, _deviation);
recov.init(&demod.out, _sampleRate / _baudRate, _omegaGain, _muGain, _omegaRelLimit);
out = &recov.out;
generic_hier_block<MSKDemod>::registerBlock(&demod);
generic_hier_block<MSKDemod>::registerBlock(&recov);
generic_hier_block<MSKDemod>::_block_init = true;
}
void setSampleRate(float sampleRate) {
assert(generic_hier_block<MSKDemod>::_block_init);
generic_hier_block<MSKDemod>::tempStop();
_sampleRate = sampleRate;
demod.setSampleRate(_sampleRate);
recov.setOmega(_sampleRate / _baudRate, _omegaRelLimit);
generic_hier_block<MSKDemod>::tempStart();
}
void setDeviation(float deviation) {
assert(generic_hier_block<MSKDemod>::_block_init);
_deviation = deviation;
demod.setDeviation(deviation);
}
void setBaudRate(float baudRate, float omegaRelLimit) {
assert(generic_hier_block<MSKDemod>::_block_init);
_baudRate = baudRate;
_omegaRelLimit = omegaRelLimit;
recov.setOmega(_sampleRate / _baudRate, _omegaRelLimit);
}
void setMMGains(float omegaGain, float myGain) {
assert(generic_hier_block<MSKDemod>::_block_init);
_omegaGain = omegaGain;
_muGain = myGain;
recov.setGains(_omegaGain, _muGain);
}
void setOmegaRelLimit(float omegaRelLimit) {
assert(generic_hier_block<MSKDemod>::_block_init);
_omegaRelLimit = omegaRelLimit;
recov.setOmegaRelLimit(_omegaRelLimit);
}
stream<float>* out = NULL;
private:
FloatFMDemod demod;
MMClockRecovery<float> recov;
float _sampleRate;
float _deviation;
float _baudRate;
float _omegaGain;
float _muGain;
float _omegaRelLimit;
};
template<int ORDER, bool OFFSET>
class PSKDemod : public generic_hier_block<PSKDemod<ORDER, OFFSET>> {
public:
PSKDemod() {}
PSKDemod(stream<complex_t>* input, float sampleRate, float baudRate, int RRCTapCount = 31, float RRCAlpha = 0.32f, float agcRate = 10e-4, float costasLoopBw = 0.004f, float omegaGain = (0.01*0.01) / 4, float muGain = 0.01f, float omegaRelLimit = 0.005f) {
init(input, sampleRate, baudRate, RRCTapCount, RRCAlpha, agcRate, costasLoopBw, omegaGain, muGain, omegaRelLimit);
}
void init(stream<complex_t>* input, float sampleRate, float baudRate, int RRCTapCount = 31, float RRCAlpha = 0.32f, float agcRate = 10e-4, float costasLoopBw = 0.004f, float omegaGain = (0.01*0.01) / 4, float muGain = 0.01f, float omegaRelLimit = 0.005f) {
_RRCTapCount = RRCTapCount;
_RRCAlpha = RRCAlpha;
_sampleRate = sampleRate;
_agcRate = agcRate;
_costasLoopBw = costasLoopBw;
_baudRate = baudRate;
_omegaGain = omegaGain;
_muGain = muGain;
_omegaRelLimit = omegaRelLimit;
agc.init(input, 1.0f, 65535, _agcRate);
taps.init(_RRCTapCount, _sampleRate, _baudRate, _RRCAlpha);
rrc.init(&agc.out, &taps);
demod.init(&rrc.out, _costasLoopBw);
generic_hier_block<PSKDemod<ORDER, OFFSET>>::registerBlock(&agc);
generic_hier_block<PSKDemod<ORDER, OFFSET>>::registerBlock(&rrc);
generic_hier_block<PSKDemod<ORDER, OFFSET>>::registerBlock(&demod);
if constexpr (OFFSET) {
delay.init(&demod.out);
recov.init(&delay.out, _sampleRate / _baudRate, _omegaGain, _muGain, _omegaRelLimit);
generic_hier_block<PSKDemod<ORDER, OFFSET>>::registerBlock(&delay);
}
else {
recov.init(&demod.out, _sampleRate / _baudRate, _omegaGain, _muGain, _omegaRelLimit);
}
generic_hier_block<PSKDemod<ORDER, OFFSET>>::registerBlock(&recov);
out = &recov.out;
generic_hier_block<PSKDemod<ORDER, OFFSET>>::_block_init = true;
}
void setInput(stream<complex_t>* input) {
assert((generic_hier_block<PSKDemod<ORDER, OFFSET>>::_block_init));
agc.setInput(input);
}
void setSampleRate(float sampleRate) {
assert((generic_hier_block<PSKDemod<ORDER, OFFSET>>::_block_init));
_sampleRate = sampleRate;
rrc.tempStop();
recov.tempStop();
taps.setSampleRate(_sampleRate);
rrc.updateWindow(&taps);
recov.setOmega(_sampleRate / _baudRate, _omegaRelLimit);
rrc.tempStart();
recov.tempStart();
}
void setBaudRate(float baudRate) {
assert((generic_hier_block<PSKDemod<ORDER, OFFSET>>::_block_init));
_baudRate = baudRate;
rrc.tempStop();
recov.tempStop();
taps.setBaudRate(_baudRate);
rrc.updateWindow(&taps);
recov.setOmega(_sampleRate / _baudRate, _omegaRelLimit);
rrc.tempStart();
recov.tempStart();
}
void setRRCParams(int RRCTapCount, float RRCAlpha) {
assert((generic_hier_block<PSKDemod<ORDER, OFFSET>>::_block_init));
_RRCTapCount = RRCTapCount;
_RRCAlpha = RRCAlpha;
taps.setTapCount(_RRCTapCount);
taps.setAlpha(RRCAlpha);
rrc.updateWindow(&taps);
}
void setAgcRate(float agcRate) {
assert((generic_hier_block<PSKDemod<ORDER, OFFSET>>::_block_init));
_agcRate = agcRate;
agc.setRate(_agcRate);
}
void setCostasLoopBw(float costasLoopBw) {
assert((generic_hier_block<PSKDemod<ORDER, OFFSET>>::_block_init));
_costasLoopBw = costasLoopBw;
demod.setLoopBandwidth(_costasLoopBw);
}
void setMMGains(float omegaGain, float myGain) {
assert((generic_hier_block<PSKDemod<ORDER, OFFSET>>::_block_init));
_omegaGain = omegaGain;
_muGain = myGain;
recov.setGains(_omegaGain, _muGain);
}
void setOmegaRelLimit(float omegaRelLimit) {
assert((generic_hier_block<PSKDemod<ORDER, OFFSET>>::_block_init));
_omegaRelLimit = omegaRelLimit;
recov.setOmegaRelLimit(_omegaRelLimit);
}
stream<complex_t>* out = NULL;
private:
dsp::ComplexAGC agc;
dsp::RRCTaps taps;
dsp::FIR<dsp::complex_t> rrc;
CostasLoop<ORDER> demod;
DelayImag delay;
MMClockRecovery<dsp::complex_t> recov;
int _RRCTapCount;
float _RRCAlpha;
float _sampleRate;
float _agcRate;
float _baudRate;
float _costasLoopBw;
float _omegaGain;
float _muGain;
float _omegaRelLimit;
};
class PMDemod : public generic_hier_block<PMDemod> {
public:
PMDemod() {}
PMDemod(stream<complex_t>* input, float sampleRate, float baudRate, float agcRate = 0.02e-3f, float pllLoopBandwidth = (0.06f*0.06f) / 4.0f, int rrcTapCount = 31, float rrcAlpha = 0.6f, float omegaGain = (0.01*0.01) / 4, float muGain = 0.01f, float omegaRelLimit = 0.005f) {
init(input, sampleRate, baudRate, agcRate, pllLoopBandwidth, rrcTapCount, rrcAlpha, omegaGain, muGain, omegaRelLimit);
}
void init(stream<complex_t>* input, float sampleRate, float baudRate, float agcRate = 0.02e-3f, float pllLoopBandwidth = (0.06f*0.06f) / 4.0f, int rrcTapCount = 31, float rrcAlpha = 0.6f, float omegaGain = (0.01*0.01) / 4, float muGain = 0.01f, float omegaRelLimit = 0.005f) {
_sampleRate = sampleRate;
_baudRate = baudRate;
_agcRate = agcRate;
_pllLoopBandwidth = pllLoopBandwidth;
_rrcTapCount = rrcTapCount;
_rrcAlpha = rrcAlpha;
_omegaGain = omegaGain;
_muGain = muGain;
_omegaRelLimit = omegaRelLimit;
agc.init(input, 1.0f, 65535, _agcRate);
pll.init(&agc.out, _pllLoopBandwidth);
rrcwin.init(_rrcTapCount, _sampleRate, _baudRate, _rrcAlpha);
rrc.init(&pll.out, &rrcwin);
recov.init(&rrc.out, _sampleRate / _baudRate, _omegaGain, _muGain, _omegaRelLimit);
out = &recov.out;
generic_hier_block<PMDemod>::registerBlock(&agc);
generic_hier_block<PMDemod>::registerBlock(&pll);
generic_hier_block<PMDemod>::registerBlock(&rrc);
generic_hier_block<PMDemod>::registerBlock(&recov);
generic_hier_block<PMDemod>::_block_init = true;
}
void setInput(stream<complex_t>* input) {
assert(generic_hier_block<PMDemod>::_block_init);
agc.setInput(input);
}
void setAgcRate(float agcRate) {
assert(generic_hier_block<PMDemod>::_block_init);
_agcRate = agcRate;
agc.setRate(_agcRate);
}
void setPllLoopBandwidth(float pllLoopBandwidth) {
assert(generic_hier_block<PMDemod>::_block_init);
_pllLoopBandwidth = pllLoopBandwidth;
pll.setLoopBandwidth(_pllLoopBandwidth);
}
void setRRCParams(int rrcTapCount, float rrcAlpha) {
assert(generic_hier_block<PMDemod>::_block_init);
_rrcTapCount = rrcTapCount;
_rrcAlpha = rrcAlpha;
rrcwin.setTapCount(_rrcTapCount);
rrcwin.setAlpha(_rrcAlpha);
rrc.updateWindow(&rrcwin);
}
void setMMGains(float omegaGain, float muGain) {
assert(generic_hier_block<PMDemod>::_block_init);
_omegaGain = omegaGain;
_muGain = muGain;
recov.setGains(_omegaGain, _muGain);
}
void setOmegaRelLimit(float omegaRelLimit) {
assert(generic_hier_block<PMDemod>::_block_init);
_omegaRelLimit = omegaRelLimit;
recov.setOmegaRelLimit(_omegaRelLimit);
}
stream<float>* out = NULL;
private:
dsp::ComplexAGC agc;
dsp::CarrierTrackingPLL<float> pll;
dsp::RRCTaps rrcwin;
dsp::FIR<float> rrc;
dsp::MMClockRecovery<float> recov;
float _sampleRate;
float _baudRate;
float _agcRate;
float _pllLoopBandwidth;
int _rrcTapCount;
float _rrcAlpha;
float _omegaGain;
float _muGain;
float _omegaRelLimit;
};
class StereoFMDemod : public generic_hier_block<StereoFMDemod> {
public:
StereoFMDemod() {}
StereoFMDemod(stream<complex_t>* input, float sampleRate, float deviation) {
init(input, sampleRate, deviation);
}
void init(stream<complex_t>* input, float sampleRate, float deviation) {
_sampleRate = sampleRate;
PilotFirWin.init(18750, 19250, 3000, _sampleRate);
demod.init(input, _sampleRate, deviation);
r2c.init(&demod.out);
pilotFilter.init(&r2c.out, &PilotFirWin);
demux.init(&pilotFilter.dataOut, &pilotFilter.pilotOut, 0.1f);
recon.init(&demux.AplusBOut, &demux.AminusBOut);
out = &recon.out;
generic_hier_block<StereoFMDemod>::registerBlock(&demod);
generic_hier_block<StereoFMDemod>::registerBlock(&r2c);
generic_hier_block<StereoFMDemod>::registerBlock(&pilotFilter);
generic_hier_block<StereoFMDemod>::registerBlock(&demux);
generic_hier_block<StereoFMDemod>::registerBlock(&recon);
generic_hier_block<StereoFMDemod>::_block_init = true;
}
void setInput(stream<float>* input) {
assert(generic_hier_block<StereoFMDemod>::_block_init);
r2c.setInput(input);
}
void setDeviation(float deviation) {
demod.setDeviation(deviation);
}
stream<stereo_t>* out = NULL;
private:
filter_window::BandPassBlackmanWindow PilotFirWin;
FloatFMDemod demod;
RealToComplex r2c;
FMStereoDemuxPilotFilter pilotFilter;
FMStereoDemux demux;
FMStereoReconstruct recon;
float _sampleRate;
};
}