SDRPlusPlus/core/src/dsp/demodulator.h
2020-11-02 21:13:28 +01:00

267 lines
8.5 KiB
C++

#pragma once
#include <dsp/block.h>
#include <spdlog/spdlog.h>
#define FAST_ATAN2_COEF1 FL_M_PI / 4.0f
#define FAST_ATAN2_COEF2 3.0f * FAST_ATAN2_COEF1
inline float fast_arctan2(float y, float x) {
float abs_y = fabsf(y);
float r, angle;
if (x == 0.0f && y == 0.0f) { return 0.0f; }
if (x>=0.0f) {
r = (x - abs_y) / (x + abs_y);
angle = FAST_ATAN2_COEF1 - FAST_ATAN2_COEF1 * r;
}
else {
r = (x + abs_y) / (abs_y - x);
angle = FAST_ATAN2_COEF2 - FAST_ATAN2_COEF1 * r;
}
if (y < 0.0f) {
return -angle;
}
return angle;
}
namespace dsp {
class FMDemod : public generic_block<FMDemod> {
public:
FMDemod() {}
FMDemod(stream<complex_t>* in, float sampleRate, float deviation) { init(in, sampleRate, deviation); }
~FMDemod() { generic_block<FMDemod>::stop(); }
void init(stream<complex_t>* in, float sampleRate, float deviation) {
_in = in;
_sampleRate = sampleRate;
_deviation = deviation;
phasorSpeed = (_sampleRate / _deviation) / (2 * FL_M_PI);
generic_block<FMDemod>::registerInput(_in);
generic_block<FMDemod>::registerOutput(&out);
}
void setInput(stream<complex_t>* in) {
std::lock_guard<std::mutex> lck(generic_block<FMDemod>::ctrlMtx);
generic_block<FMDemod>::tempStop();
generic_block<FMDemod>::unregisterInput(_in);
_in = in;
generic_block<FMDemod>::registerInput(_in);
generic_block<FMDemod>::tempStart();
}
void setSampleRate(float sampleRate) {
std::lock_guard<std::mutex> lck(generic_block<FMDemod>::ctrlMtx);
generic_block<FMDemod>::tempStop();
_sampleRate = sampleRate;
phasorSpeed = (_sampleRate / _deviation) / (2 * FL_M_PI);
generic_block<FMDemod>::tempStart();
}
float getSampleRate() {
return _sampleRate;
}
void setDeviation(float deviation) {
std::lock_guard<std::mutex> lck(generic_block<FMDemod>::ctrlMtx);
generic_block<FMDemod>::tempStop();
_deviation = deviation;
phasorSpeed = (_sampleRate / _deviation) / (2 * FL_M_PI);
generic_block<FMDemod>::tempStart();
}
float getDeviation() {
return _deviation;
}
int run() {
count = _in->read();
if (count < 0) { return -1; }
// This is somehow faster than volk...
float diff, currentPhase;
if (out.aquire() < 0) { return -1; }
for (int i = 0; i < count; i++) {
currentPhase = fast_arctan2(_in->data[i].i, _in->data[i].q);
diff = currentPhase - phase;
if (diff > FL_M_PI) { out.data[i] = (diff - 2 * FL_M_PI) * phasorSpeed; }
else if (diff <= -FL_M_PI) { out.data[i] = (diff + 2 * FL_M_PI) * phasorSpeed; }
phase = currentPhase;
}
_in->flush();
out.write(count);
return count;
}
stream<float> out;
private:
int count;
float phase, phasorSpeed, _sampleRate, _deviation;
stream<complex_t>* _in;
};
class AMDemod : public generic_block<AMDemod> {
public:
AMDemod() {}
AMDemod(stream<complex_t>* in) { init(in); }
~AMDemod() { generic_block<AMDemod>::stop(); }
void init(stream<complex_t>* in) {
_in = in;
generic_block<AMDemod>::registerInput(_in);
generic_block<AMDemod>::registerOutput(&out);
}
void setInput(stream<complex_t>* in) {
std::lock_guard<std::mutex> lck(generic_block<AMDemod>::ctrlMtx);
generic_block<AMDemod>::tempStop();
generic_block<AMDemod>::unregisterInput(_in);
_in = in;
generic_block<AMDemod>::registerInput(_in);
generic_block<AMDemod>::tempStart();
}
int run() {
count = _in->read();
if (count < 0) { return -1; }
if (out.aquire() < 0) { return -1; }
volk_32fc_magnitude_32f(out.data, (lv_32fc_t*)_in->data, count);
_in->flush();
out.write(count);
return count;
}
stream<float> out;
private:
int count;
stream<complex_t>* _in;
};
class SSBDemod : public generic_block<SSBDemod> {
public:
SSBDemod() {}
SSBDemod(stream<complex_t>* in, float sampleRate, float bandWidth, int mode) { init(in, sampleRate, bandWidth, mode); }
~SSBDemod() { generic_block<SSBDemod>::stop(); }
enum {
MODE_USB,
MODE_LSB,
MODE_DSB
};
void init(stream<complex_t>* in, float sampleRate, float bandWidth, int mode) {
_in = in;
_sampleRate = sampleRate;
_bandWidth = bandWidth;
_mode = mode;
phase = lv_cmake(1.0f, 0.0f);
switch (_mode) {
case MODE_USB:
phaseDelta = lv_cmake(std::cos((_bandWidth / _sampleRate) * FL_M_PI), std::sin((_bandWidth / _sampleRate) * FL_M_PI));
break;
case MODE_LSB:
phaseDelta = lv_cmake(std::cos(-(_bandWidth / _sampleRate) * FL_M_PI), std::sin(-(_bandWidth / _sampleRate) * FL_M_PI));
break;
case MODE_DSB:
phaseDelta = lv_cmake(1.0f, 0.0f);
break;
}
generic_block<SSBDemod>::registerInput(_in);
generic_block<SSBDemod>::registerOutput(&out);
}
void setInput(stream<complex_t>* in) {
std::lock_guard<std::mutex> lck(generic_block<SSBDemod>::ctrlMtx);
generic_block<SSBDemod>::tempStop();
generic_block<SSBDemod>::unregisterInput(_in);
_in = in;
generic_block<SSBDemod>::registerInput(_in);
generic_block<SSBDemod>::tempStart();
}
void setSampleRate(float sampleRate) {
// No need to restart
_sampleRate = sampleRate;
switch (_mode) {
case MODE_USB:
phaseDelta = lv_cmake(std::cos((_bandWidth / _sampleRate) * FL_M_PI), std::sin((_bandWidth / _sampleRate) * FL_M_PI));
break;
case MODE_LSB:
phaseDelta = lv_cmake(std::cos(-(_bandWidth / _sampleRate) * FL_M_PI), std::sin(-(_bandWidth / _sampleRate) * FL_M_PI));
break;
case MODE_DSB:
phaseDelta = lv_cmake(1.0f, 0.0f);
break;
}
}
void setBandWidth(float bandWidth) {
// No need to restart
_bandWidth = bandWidth;
switch (_mode) {
case MODE_USB:
phaseDelta = lv_cmake(std::cos((_bandWidth / _sampleRate) * FL_M_PI), std::sin((_bandWidth / _sampleRate) * FL_M_PI));
break;
case MODE_LSB:
phaseDelta = lv_cmake(std::cos(-(_bandWidth / _sampleRate) * FL_M_PI), std::sin(-(_bandWidth / _sampleRate) * FL_M_PI));
break;
case MODE_DSB:
phaseDelta = lv_cmake(1.0f, 0.0f);
break;
}
}
void setMode(int mode) {
_mode = mode;
switch (_mode) {
case MODE_USB:
phaseDelta = lv_cmake(std::cos((_bandWidth / _sampleRate) * FL_M_PI), std::sin((_bandWidth / _sampleRate) * FL_M_PI));
break;
case MODE_LSB:
phaseDelta = lv_cmake(std::cos(-(_bandWidth / _sampleRate) * FL_M_PI), std::sin(-(_bandWidth / _sampleRate) * FL_M_PI));
break;
case MODE_DSB:
phaseDelta = lv_cmake(1.0f, 0.0f);
break;
}
}
int run() {
count = _in->read();
if (count < 0) { return -1; }
if (out.aquire() < 0) { return -1; }
volk_32fc_s32fc_x2_rotator_32fc((lv_32fc_t*)out.data, (lv_32fc_t*)_in->data, phaseDelta, &phase, count);
volk_32fc_deinterleave_real_32f(out.data, (lv_32fc_t*)_in->data, count);
_in->flush();
out.write(count);
return count;
}
stream<float> out;
private:
int count;
int _mode;
float _sampleRate, _bandWidth;
stream<complex_t>* _in;
lv_32fc_t phase;
lv_32fc_t phaseDelta;
};
}