SDRPlusPlus/core/src/dsp/demodulator.h
2021-03-29 21:53:43 +02:00

519 lines
17 KiB
C++

#pragma once
#include <dsp/block.h>
#include <volk/volk.h>
#include <dsp/filter.h>
#include <dsp/processing.h>
#include <dsp/routing.h>
#include <spdlog/spdlog.h>
#include <dsp/pll.h>
#include <dsp/clock_recovery.h>
#define FAST_ATAN2_COEF1 FL_M_PI / 4.0f
#define FAST_ATAN2_COEF2 3.0f * FAST_ATAN2_COEF1
inline float fast_arctan2(float y, float x) {
float abs_y = fabsf(y);
float r, angle;
if (x == 0.0f && y == 0.0f) { return 0.0f; }
if (x>=0.0f) {
r = (x - abs_y) / (x + abs_y);
angle = FAST_ATAN2_COEF1 - FAST_ATAN2_COEF1 * r;
}
else {
r = (x + abs_y) / (abs_y - x);
angle = FAST_ATAN2_COEF2 - FAST_ATAN2_COEF1 * r;
}
if (y < 0.0f) {
return -angle;
}
return angle;
}
namespace dsp {
class FloatFMDemod : public generic_block<FloatFMDemod> {
public:
FloatFMDemod() {}
FloatFMDemod(stream<complex_t>* in, float sampleRate, float deviation) { init(in, sampleRate, deviation); }
void init(stream<complex_t>* in, float sampleRate, float deviation) {
_in = in;
_sampleRate = sampleRate;
_deviation = deviation;
phasorSpeed = (2 * FL_M_PI) / (_sampleRate / _deviation);
generic_block<FloatFMDemod>::registerInput(_in);
generic_block<FloatFMDemod>::registerOutput(&out);
}
void setInput(stream<complex_t>* in) {
std::lock_guard<std::mutex> lck(generic_block<FloatFMDemod>::ctrlMtx);
generic_block<FloatFMDemod>::tempStop();
generic_block<FloatFMDemod>::unregisterInput(_in);
_in = in;
generic_block<FloatFMDemod>::registerInput(_in);
generic_block<FloatFMDemod>::tempStart();
}
void setSampleRate(float sampleRate) {
std::lock_guard<std::mutex> lck(generic_block<FloatFMDemod>::ctrlMtx);
generic_block<FloatFMDemod>::tempStop();
_sampleRate = sampleRate;
phasorSpeed = (2 * FL_M_PI) / (_sampleRate / _deviation);
generic_block<FloatFMDemod>::tempStart();
}
float getSampleRate() {
return _sampleRate;
}
void setDeviation(float deviation) {
std::lock_guard<std::mutex> lck(generic_block<FloatFMDemod>::ctrlMtx);
generic_block<FloatFMDemod>::tempStop();
_deviation = deviation;
phasorSpeed = (2 * FL_M_PI) / (_sampleRate / _deviation);
generic_block<FloatFMDemod>::tempStart();
}
float getDeviation() {
return _deviation;
}
int run() {
int count = _in->read();
if (count < 0) { return -1; }
// This is somehow faster than volk...
float diff, currentPhase;
for (int i = 0; i < count; i++) {
currentPhase = fast_arctan2(_in->readBuf[i].im, _in->readBuf[i].re);
diff = currentPhase - phase;
if (diff > 3.1415926535f) { diff -= 2 * 3.1415926535f; }
else if (diff <= -3.1415926535f) { diff += 2 * 3.1415926535f; }
out.writeBuf[i] = diff / phasorSpeed;
phase = currentPhase;
}
_in->flush();
if (!out.swap(count)) { return -1; }
return count;
}
stream<float> out;
private:
float phase = 0;
float phasorSpeed, _sampleRate, _deviation;
stream<complex_t>* _in;
};
class FMDemod : public generic_block<FMDemod> {
public:
FMDemod() {}
FMDemod(stream<complex_t>* in, float sampleRate, float deviation) { init(in, sampleRate, deviation); }
void init(stream<complex_t>* in, float sampleRate, float deviation) {
_in = in;
_sampleRate = sampleRate;
_deviation = deviation;
phasorSpeed = (2 * FL_M_PI) / (_sampleRate / _deviation);
generic_block<FMDemod>::registerInput(_in);
generic_block<FMDemod>::registerOutput(&out);
}
void setInput(stream<complex_t>* in) {
std::lock_guard<std::mutex> lck(generic_block<FMDemod>::ctrlMtx);
generic_block<FMDemod>::tempStop();
generic_block<FMDemod>::unregisterInput(_in);
_in = in;
generic_block<FMDemod>::registerInput(_in);
generic_block<FMDemod>::tempStart();
}
void setSampleRate(float sampleRate) {
std::lock_guard<std::mutex> lck(generic_block<FMDemod>::ctrlMtx);
generic_block<FMDemod>::tempStop();
_sampleRate = sampleRate;
phasorSpeed = (2 * FL_M_PI) / (_sampleRate / _deviation);
generic_block<FMDemod>::tempStart();
}
float getSampleRate() {
return _sampleRate;
}
void setDeviation(float deviation) {
std::lock_guard<std::mutex> lck(generic_block<FMDemod>::ctrlMtx);
generic_block<FMDemod>::tempStop();
_deviation = deviation;
phasorSpeed = (2 * FL_M_PI) / (_sampleRate / _deviation);
generic_block<FMDemod>::tempStart();
}
float getDeviation() {
return _deviation;
}
int run() {
int count = _in->read();
if (count < 0) { return -1; }
// This is somehow faster than volk...
float diff, currentPhase;
for (int i = 0; i < count; i++) {
currentPhase = fast_arctan2(_in->readBuf[i].im, _in->readBuf[i].re);
diff = currentPhase - phase;
if (diff > 3.1415926535f) { diff -= 2 * 3.1415926535f; }
else if (diff <= -3.1415926535f) { diff += 2 * 3.1415926535f; }
out.writeBuf[i].l = diff / phasorSpeed;
out.writeBuf[i].r = diff / phasorSpeed;
phase = currentPhase;
}
_in->flush();
if (!out.swap(count)) { return -1; }
return count;
}
stream<stereo_t> out;
private:
float phase = 0;
float phasorSpeed, _sampleRate, _deviation;
stream<complex_t>* _in;
};
class StereoFMDemod : public generic_block<StereoFMDemod> {
public:
StereoFMDemod() {}
StereoFMDemod(stream<complex_t>* in, float sampleRate, float deviation) { init(in, sampleRate, deviation); }
~StereoFMDemod() {
stop();
delete[] doubledPilot;
delete[] a_minus_b;
delete[] a_out;
delete[] b_out;
}
void init(stream<complex_t>* in, float sampleRate, float deviation) {
_sampleRate = sampleRate;
doubledPilot = new float[STREAM_BUFFER_SIZE];
a_minus_b = new float[STREAM_BUFFER_SIZE];
a_out = new float[STREAM_BUFFER_SIZE];
b_out = new float[STREAM_BUFFER_SIZE];
fmDemod.init(in, sampleRate, deviation);
split.init(&fmDemod.out);
split.bindStream(&filterInput);
split.bindStream(&decodeInput);
// Filter init
win.init(1000, 1000, 19000, sampleRate);
filter.init(&filterInput, &win);
agc.init(&filter.out, 20.0f, sampleRate);
generic_block<StereoFMDemod>::registerInput(&decodeInput);
generic_block<StereoFMDemod>::registerOutput(&out);
}
void setInput(stream<complex_t>* in) {
std::lock_guard<std::mutex> lck(generic_block<StereoFMDemod>::ctrlMtx);
generic_block<StereoFMDemod>::tempStop();
fmDemod.setInput(in);
generic_block<StereoFMDemod>::tempStart();
}
void setSampleRate(float sampleRate) {
std::lock_guard<std::mutex> lck(generic_block<StereoFMDemod>::ctrlMtx);
generic_block<StereoFMDemod>::tempStop();
_sampleRate = sampleRate;
fmDemod.setSampleRate(sampleRate);
win.setSampleRate(_sampleRate);
filter.updateWindow(&win);
generic_block<StereoFMDemod>::tempStart();
}
float getSampleRate() {
return _sampleRate;
}
void setDeviation(float deviation) {
std::lock_guard<std::mutex> lck(generic_block<StereoFMDemod>::ctrlMtx);
generic_block<StereoFMDemod>::tempStop();
fmDemod.setDeviation(deviation);
generic_block<StereoFMDemod>::tempStart();
}
float getDeviation() {
return fmDemod.getDeviation();
}
int run() {
count = decodeInput.read();
if (count < 0) { return -1; }
countFilter = agc.out.read();
if (countFilter < 0) { return -1; }
volk_32f_x2_multiply_32f(doubledPilot, agc.out.readBuf, agc.out.readBuf, count);
volk_32f_x2_multiply_32f(a_minus_b, decodeInput.readBuf, doubledPilot, count);
volk_32f_x2_add_32f(a_out, decodeInput.readBuf, a_minus_b, count);
volk_32f_x2_subtract_32f(b_out, decodeInput.readBuf, a_minus_b, count);
decodeInput.flush();
agc.out.flush();
volk_32f_x2_interleave_32fc((lv_32fc_t*)out.writeBuf, a_out, b_out, count);
if (!out.swap(count)) { return -1; }
return count;
}
void start() {
std::lock_guard<std::mutex> lck(generic_block<StereoFMDemod>::ctrlMtx);
if (generic_block<StereoFMDemod>::running) {
return;
}
generic_block<StereoFMDemod>::running = true;
generic_block<StereoFMDemod>::doStart();
fmDemod.start();
split.start();
filter.start();
agc.start();
}
void stop() {
std::lock_guard<std::mutex> lck(generic_block<StereoFMDemod>::ctrlMtx);
if (!generic_block<StereoFMDemod>::running) {
return;
}
fmDemod.stop();
split.stop();
filter.stop();
agc.stop();
generic_block<StereoFMDemod>::doStop();
generic_block<StereoFMDemod>::running = false;
}
stream<stereo_t> out;
private:
int count;
int countFilter;
float _sampleRate;
FloatFMDemod fmDemod;
Splitter<float> split;
// Pilot tone filtering
stream<float> filterInput;
FIR<float> filter;
filter_window::BlackmanBandpassWindow win;
AGC agc;
stream<float> decodeInput;
// Buffers
float* doubledPilot;
float* a_minus_b;
float* a_out;
float* b_out;
};
class AMDemod : public generic_block<AMDemod> {
public:
AMDemod() {}
AMDemod(stream<complex_t>* in) { init(in); }
void init(stream<complex_t>* in) {
_in = in;
generic_block<AMDemod>::registerInput(_in);
generic_block<AMDemod>::registerOutput(&out);
}
void setInput(stream<complex_t>* in) {
std::lock_guard<std::mutex> lck(generic_block<AMDemod>::ctrlMtx);
generic_block<AMDemod>::tempStop();
generic_block<AMDemod>::unregisterInput(_in);
_in = in;
generic_block<AMDemod>::registerInput(_in);
generic_block<AMDemod>::tempStart();
}
int run() {
int count = _in->read();
if (count < 0) { return -1; }
volk_32fc_magnitude_32f(out.writeBuf, (lv_32fc_t*)_in->readBuf, count);
_in->flush();
float avg;
volk_32f_accumulator_s32f(&avg, out.writeBuf, count);
avg /= (float)count;
for (int i = 0; i < count; i++) {
out.writeBuf[i] -= avg;
}
if (!out.swap(count)) { return -1; }
return count;
}
stream<float> out;
private:
stream<complex_t>* _in;
};
class SSBDemod : public generic_block<SSBDemod> {
public:
SSBDemod() {}
SSBDemod(stream<complex_t>* in, float sampleRate, float bandWidth, int mode) { init(in, sampleRate, bandWidth, mode); }
~SSBDemod() {
generic_block<SSBDemod>::stop();
delete[] buffer;
}
enum {
MODE_USB,
MODE_LSB,
MODE_DSB
};
void init(stream<complex_t>* in, float sampleRate, float bandWidth, int mode) {
_in = in;
_sampleRate = sampleRate;
_bandWidth = bandWidth;
_mode = mode;
phase = lv_cmake(1.0f, 0.0f);
switch (_mode) {
case MODE_USB:
phaseDelta = lv_cmake(std::cos((_bandWidth / _sampleRate) * FL_M_PI), std::sin((_bandWidth / _sampleRate) * FL_M_PI));
break;
case MODE_LSB:
phaseDelta = lv_cmake(std::cos(-(_bandWidth / _sampleRate) * FL_M_PI), std::sin(-(_bandWidth / _sampleRate) * FL_M_PI));
break;
case MODE_DSB:
phaseDelta = lv_cmake(1.0f, 0.0f);
break;
}
buffer = new lv_32fc_t[STREAM_BUFFER_SIZE];
generic_block<SSBDemod>::registerInput(_in);
generic_block<SSBDemod>::registerOutput(&out);
}
void setInput(stream<complex_t>* in) {
std::lock_guard<std::mutex> lck(generic_block<SSBDemod>::ctrlMtx);
generic_block<SSBDemod>::tempStop();
generic_block<SSBDemod>::unregisterInput(_in);
_in = in;
generic_block<SSBDemod>::registerInput(_in);
generic_block<SSBDemod>::tempStart();
}
void setSampleRate(float sampleRate) {
// No need to restart
_sampleRate = sampleRate;
switch (_mode) {
case MODE_USB:
phaseDelta = lv_cmake(std::cos((_bandWidth / _sampleRate) * FL_M_PI), std::sin((_bandWidth / _sampleRate) * FL_M_PI));
break;
case MODE_LSB:
phaseDelta = lv_cmake(std::cos(-(_bandWidth / _sampleRate) * FL_M_PI), std::sin(-(_bandWidth / _sampleRate) * FL_M_PI));
break;
case MODE_DSB:
phaseDelta = lv_cmake(1.0f, 0.0f);
break;
}
}
void setBandWidth(float bandWidth) {
// No need to restart
_bandWidth = bandWidth;
switch (_mode) {
case MODE_USB:
phaseDelta = lv_cmake(std::cos((_bandWidth / _sampleRate) * FL_M_PI), std::sin((_bandWidth / _sampleRate) * FL_M_PI));
break;
case MODE_LSB:
phaseDelta = lv_cmake(std::cos(-(_bandWidth / _sampleRate) * FL_M_PI), std::sin(-(_bandWidth / _sampleRate) * FL_M_PI));
break;
case MODE_DSB:
phaseDelta = lv_cmake(1.0f, 0.0f);
break;
}
}
void setMode(int mode) {
_mode = mode;
switch (_mode) {
case MODE_USB:
phaseDelta = lv_cmake(std::cos((_bandWidth / _sampleRate) * FL_M_PI), std::sin((_bandWidth / _sampleRate) * FL_M_PI));
break;
case MODE_LSB:
phaseDelta = lv_cmake(std::cos(-(_bandWidth / _sampleRate) * FL_M_PI), std::sin(-(_bandWidth / _sampleRate) * FL_M_PI));
break;
case MODE_DSB:
phaseDelta = lv_cmake(1.0f, 0.0f);
break;
}
}
int run() {
int count = _in->read();
if (count < 0) { return -1; }
volk_32fc_s32fc_x2_rotator_32fc(buffer, (lv_32fc_t*)_in->readBuf, phaseDelta, &phase, count);
volk_32fc_deinterleave_real_32f(out.writeBuf, buffer, count);
_in->flush();
if (!out.swap(count)) { return -1; }
return count;
}
stream<float> out;
private:
int _mode;
float _sampleRate, _bandWidth;
stream<complex_t>* _in;
lv_32fc_t* buffer;
lv_32fc_t phase;
lv_32fc_t phaseDelta;
};
class MSKDemod : public generic_hier_block<MSKDemod> {
public:
MSKDemod() {}
MSKDemod(stream<complex_t>* input, float sampleRate, float deviation, float baudRate) { init(input, sampleRate, deviation, baudRate); }
void init(stream<complex_t>* input, float sampleRate, float deviation, float baudRate) {
demod.init(input, sampleRate, deviation);
recov.init(&demod.out, sampleRate / baudRate, powf(0.01f, 2) / 4.0f, 0.01f, 100e-6f);
out = &recov.out;
generic_hier_block<MSKDemod>::registerBlock(&demod);
generic_hier_block<MSKDemod>::registerBlock(&recov);
}
stream<float>* out = NULL;
private:
FloatFMDemod demod;
MMClockRecovery<float> recov;
};
}