#pragma once #include #include #include #include namespace dsp { template class PolyphaseResampler : public generic_block> { public: PolyphaseResampler() {} PolyphaseResampler(stream* in, dsp::filter_window::generic_window* window, float inSampleRate, float outSampleRate) { init(in, window, inSampleRate, outSampleRate); } ~PolyphaseResampler() { generic_block>::stop(); volk_free(buffer); volk_free(taps); freeTapPhases(); } void init(stream* in, dsp::filter_window::generic_window* window, float inSampleRate, float outSampleRate) { _in = in; _window = window; _inSampleRate = inSampleRate; _outSampleRate = outSampleRate; int _gcd = std::gcd((int)_inSampleRate, (int)_outSampleRate); _interp = _outSampleRate / _gcd; _decim = _inSampleRate / _gcd; tapCount = _window->getTapCount(); taps = (float*)volk_malloc(tapCount * sizeof(float), volk_get_alignment()); _window->createTaps(taps, tapCount, _interp); buildTapPhases(); buffer = (T*)volk_malloc(STREAM_BUFFER_SIZE * sizeof(T) * 2, volk_get_alignment()); memset(buffer, 0, STREAM_BUFFER_SIZE * sizeof(T) * 2); generic_block>::registerInput(_in); generic_block>::registerOutput(&out); } void setInput(stream* in) { std::lock_guard lck(generic_block>::ctrlMtx); generic_block>::tempStop(); generic_block>::unregisterInput(_in); _in = in; generic_block>::registerInput(_in); generic_block>::tempStart(); } void setInSampleRate(float inSampleRate) { std::lock_guard lck(generic_block>::ctrlMtx); generic_block>::tempStop(); _inSampleRate = inSampleRate; int _gcd = std::gcd((int)_inSampleRate, (int)_outSampleRate); _interp = _outSampleRate / _gcd; _decim = _inSampleRate / _gcd; buildTapPhases(); generic_block>::tempStart(); } void setOutSampleRate(float outSampleRate) { std::lock_guard lck(generic_block>::ctrlMtx); generic_block>::tempStop(); _outSampleRate = outSampleRate; int _gcd = std::gcd((int)_inSampleRate, (int)_outSampleRate); _interp = _outSampleRate / _gcd; _decim = _inSampleRate / _gcd; buildTapPhases(); generic_block>::tempStart(); } int getInterpolation() { return _interp; } int getDecimation() { return _decim; } void updateWindow(dsp::filter_window::generic_window* window) { std::lock_guard lck(generic_block>::ctrlMtx); generic_block>::tempStop(); _window = window; volk_free(taps); tapCount = window->getTapCount(); taps = (float*)volk_malloc(tapCount * sizeof(float), volk_get_alignment()); window->createTaps(taps, tapCount, _interp); buildTapPhases(); generic_block>::tempStart(); } int calcOutSize(int in) { return (in * _interp) / _decim; } virtual int run() override { count = _in->read(); if (count < 0) { return -1; } int outCount = calcOutSize(count); memcpy(&buffer[tapsPerPhase], _in->readBuf, count * sizeof(T)); _in->flush(); // Write to output int outIndex = 0; int _interp_m_1 = _interp - 1; if constexpr (std::is_same_v) { for (int i = 0; outIndex < outCount; i += _decim) { int phase = i % _interp; volk_32f_x2_dot_prod_32f(&out.writeBuf[outIndex], &buffer[i / _interp], tapPhases[phase], tapsPerPhase); outIndex++; } } if constexpr (std::is_same_v || std::is_same_v) { for (int i = 0; outIndex < outCount; i += _decim) { int phase = i % _interp; volk_32fc_32f_dot_prod_32fc((lv_32fc_t*)&out.writeBuf[outIndex], (lv_32fc_t*)&buffer[(i / _interp)], tapPhases[phase], tapsPerPhase); outIndex++; } } if (!out.swap(outCount)) { return -1; } memmove(buffer, &buffer[count], tapsPerPhase * sizeof(T)); return count; } stream out; private: void buildTapPhases(){ if(!taps){ return; } if(!tapPhases.empty()){ freeTapPhases(); } int phases = _interp; tapsPerPhase = (tapCount+phases-1)/phases; //Integer division ceiling bufStart = &buffer[tapsPerPhase]; for(int i = 0; i < phases; i++){ tapPhases.push_back((float*)volk_malloc(tapsPerPhase * sizeof(float), volk_get_alignment())); } int currentTap = 0; for(int tap = 0; tap < tapsPerPhase; tap++) { for (int phase = 0; phase < phases; phase++) { if(currentTap < tapCount) { tapPhases[(_interp - 1) - phase][tap] = taps[currentTap++]; } else{ tapPhases[(_interp - 1) - phase][tap] = 0; } } } } void freeTapPhases(){ for(auto & tapPhase : tapPhases){ volk_free(tapPhase); } tapPhases.clear(); } int count; stream* _in; dsp::filter_window::generic_window* _window; T* bufStart; T* buffer; int tapCount; int _interp, _decim; float _inSampleRate, _outSampleRate; float* taps; int tapsPerPhase; std::vector tapPhases; }; class PowerDecimator : public generic_block { public: PowerDecimator() {} PowerDecimator(stream* in, unsigned int power) { init(in, power); } ~PowerDecimator() { generic_block::stop(); } void init(stream* in, unsigned int power) { _in = in; _power = power; generic_block::registerInput(_in); generic_block::registerOutput(&out); } void setInput(stream* in) { std::lock_guard lck(generic_block::ctrlMtx); generic_block::tempStop(); generic_block::unregisterInput(_in); _in = in; generic_block::registerInput(_in); generic_block::tempStart(); } void setPower(unsigned int power) { std::lock_guard lck(generic_block::ctrlMtx); generic_block::tempStop(); generic_block::unregisterInput(_in); _power = power; generic_block::registerInput(_in); generic_block::tempStart(); } int run() { count = _in->read(); if (count < 0) { return -1; } if (_power == 0) { memcpy(out.writeBuf, _in->readBuf, count * sizeof(complex_t)); } else if (_power == 1) { for (int j = 0; j < count; j += 2) { out.writeBuf[j / 2].i = (_in->readBuf[j].i + _in->readBuf[j + 1].i) * 0.5f; out.writeBuf[j / 2].q = (_in->readBuf[j].q + _in->readBuf[j + 1].q) * 0.5f; } count /= 2; } _in->flush(); if (_power > 1) { for (int i = 1; i < _power; i++) { for (int j = 0; j < count; j += 2) { out.writeBuf[j / 2].i = (_in->readBuf[j].i + _in->readBuf[j + 1].i) * 0.5f; out.writeBuf[j / 2].q = (_in->readBuf[j].q + _in->readBuf[j + 1].q) * 0.5f; } count /= 2; } } if (!out.swap(count)) { return -1; } return count; } stream out; private: int count; unsigned int _power = 0; stream* _in; }; }