#include #include #include #include using namespace std::chrono_literals; namespace rfspace { Client::Client(std::shared_ptr tcp, std::shared_ptr udp, dsp::stream* out) { this->tcp = tcp; this->udp = udp; output = out; // Allocate buffers sbuffer = new uint8_t[RFSPACE_MAX_SIZE]; // Clear write stop of stream just in case output->clearWriteStop(); // Send UDP packet so that a router opens the port sendDummyUDP(); // Start workers tcpWorkerThread = std::thread(&Client::tcpWorker, this); udpWorkerThread = std::thread(&Client::udpWorker, this); // Get device ID and wait for response getControlItem(RFSPACE_CTRL_ITEM_PROD_ID, NULL, 0); { std::unique_lock lck(devIdMtx); if (!devIdCnd.wait_for(lck, std::chrono::milliseconds(RFSPACE_TIMEOUT_MS), [=](){ return devIdAvailable; })) { throw std::runtime_error("Could not identify remote device"); } } // Default configuration stop(); setSampleRate(1228800); setFrequency(8830000); setGain(0); setPort(RFSPACE_RF_PORT_1); // Start heartbeat heartBeatThread = std::thread(&Client::heartBeatWorker, this); } Client::~Client() { close(); delete[] sbuffer; } void Client::sendDummyUDP() { uint8_t dummy = 0x5A; udp->send(&dummy, 1); } int Client::getControlItem(ControlItem item, void* param, int len) { // Build packet uint16_t* header = (uint16_t*)&sbuffer[0]; uint16_t* item_val = (uint16_t*)&sbuffer[2]; *header = 4 | (RFSPACE_MSG_TYPE_H2T_REQ_CTRL_ITEM << 13); *item_val = item; // Send packet tcp->send(sbuffer, 4); return -1; } void Client::setControlItem(ControlItem item, void* param, int len) { // Build packet uint16_t* header = (uint16_t*)&sbuffer[0]; uint16_t* item_val = (uint16_t*)&sbuffer[2]; *header = (len + 4) | (RFSPACE_MSG_TYPE_H2T_SET_CTRL_ITEM << 13); *item_val = item; memcpy(&sbuffer[4], param, len); // Send packet tcp->send(sbuffer, len + 4); } void Client::setControlItemWithChanID(ControlItem item, uint8_t chanId, void* param, int len) { // Build packet uint16_t* header = (uint16_t*)&sbuffer[0]; uint16_t* item_val = (uint16_t*)&sbuffer[2]; uint8_t* chan = &sbuffer[4]; *header = (len + 5) | (RFSPACE_MSG_TYPE_H2T_SET_CTRL_ITEM << 13); *item_val = item; *chan = chanId; memcpy(&sbuffer[5], param, len); // Send packet tcp->send(sbuffer, len + 5); } std::vector Client::getSamplerates() { std::vector sr; switch (deviceId) { case RFSPACE_DEV_ID_CLOUD_SDR: case RFSPACE_DEV_ID_CLOUD_IQ: for (int n = 122880000 / (4 * 25); n >= 32000; n /= 2) { sr.push_back(n); } break; case RFSPACE_DEV_ID_NET_SDR: case RFSPACE_DEV_ID_SDR_IP: default: for (int n = 80000000 / (4 * 25); n >= 32000; n /= 2) { sr.push_back(n); } break; } return sr; } void Client::setFrequency(uint64_t freq) { setControlItemWithChanID(RFSPACE_CTRL_ITEM_NCO_FREQUENCY, 0, &freq, 5); } void Client::setPort(RFPort port) { uint8_t value = port; setControlItemWithChanID(RFSPACE_CTRL_ITEM_RF_PORT, 0, &value, sizeof(value)); } void Client::setGain(int8_t gain) { setControlItemWithChanID(RFSPACE_CTRL_ITEM_RF_GAIN, 0, &gain, sizeof(gain)); } void Client::setSampleRate(uint32_t sampleRate) { // Acquire the buffer variables std::lock_guard lck(bufferMtx); // Update block size blockSize = sampleRate / 200; // Send samplerate to device setControlItemWithChanID(RFSPACE_CTRL_ITEM_IQ_SAMP_RATE, 0, &sampleRate, sizeof(sampleRate)); } void Client::start(SampleFormat sampleFormat, SampleDepth sampleDepth) { // Acquire the buffer variables std::lock_guard lck(bufferMtx); // Reset buffer inBuffer = 0; // Start device uint8_t args[4] = { (uint8_t)sampleFormat, (uint8_t)RFSPACE_STATE_RUN, (uint8_t)sampleDepth, 0 }; setControlItem(RFSPACE_CTRL_ITEM_STATE, args, sizeof(args)); } void Client::stop() { uint8_t args[4] = { 0, RFSPACE_STATE_IDLE, 0, 0 }; setControlItem(RFSPACE_CTRL_ITEM_STATE, args, sizeof(args)); } void Client::close() { // Stop UDP worker output->stopWriter(); udp->close(); if (udpWorkerThread.joinable()) { udpWorkerThread.join(); } output->clearWriteStop(); // Stop heartbeat worker stopHeartBeat = true; heartBeatCnd.notify_all(); if (heartBeatThread.joinable()) { heartBeatThread.join(); } // Stop TCP worker tcp->close(); if (tcpWorkerThread.joinable()) { tcpWorkerThread.join(); } } bool Client::isOpen() { return tcp->isOpen() || udp->isOpen(); } void Client::tcpWorker() { // Allocate receive buffer uint8_t* buffer = new uint8_t[RFSPACE_MAX_SIZE]; // Receive loop while (true) { // Receive header uint16_t header; if (tcp->recv((uint8_t*)&header, sizeof(uint16_t), true) <= 0) { break; } // Decode header uint8_t type = header >> 13; uint16_t size = header & 0b1111111111111; // Receive data if (tcp->recv(buffer, size - 2, true, RFSPACE_TIMEOUT_MS) <= 0) { break; } // Check for a device ID uint16_t* controlItem = (uint16_t*)&buffer[0]; if (type == RFSPACE_MSG_TYPE_T2H_SET_CTRL_ITEM_RESP && *controlItem == RFSPACE_CTRL_ITEM_PROD_ID) { { std::lock_guard lck(devIdMtx); deviceId = (DeviceID)*(uint32_t*)&buffer[2]; devIdAvailable = true; } devIdCnd.notify_all(); } } // Free receive buffer delete[] buffer; } void Client::udpWorker() { // Allocate receive buffer uint8_t* buffer = new uint8_t[RFSPACE_MAX_SIZE]; uint16_t* header = (uint16_t*)&buffer[0]; // Receive loop while (true) { // Receive datagram int rsize = udp->recv(buffer, RFSPACE_MAX_SIZE); if (rsize <= 0) { break; } // Decode header uint8_t type = (*header) >> 13; uint16_t size = (*header) & 0b1111111111111; if (rsize != size) { flog::error("Datagram size mismatch: {} vs {}", rsize, size); continue; } // Check for a sample packet if (type == RFSPACE_MSG_TYPE_T2H_DATA_ITEM_0) { // Acquire the buffer variables std::lock_guard lck(bufferMtx); // Convert samples to complex float int16_t* samples = (int16_t*)&buffer[4]; int sampCount = (size - 4) / (2 * sizeof(int16_t)); volk_16i_s32f_convert_32f((float*)&output->writeBuf[inBuffer], samples, 32768.0f, sampCount * 2); inBuffer += sampCount; // Send out samples if enough are buffered if (inBuffer >= blockSize) { if (!output->swap(inBuffer)) { break; }; inBuffer = 0; } } } // Free receive buffer delete[] buffer; } void Client::heartBeatWorker() { uint8_t dummy[4]; while (true) { getControlItem(RFSPACE_CTRL_ITEM_STATE, dummy, sizeof(dummy)); std::unique_lock lck(heartBeatMtx); bool to = heartBeatCnd.wait_for(lck, std::chrono::milliseconds(RFSPACE_HEARTBEAT_INTERVAL_MS), [=](){ return stopHeartBeat; }); if (to) { return; } } } std::shared_ptr connect(std::string host, uint16_t port, dsp::stream* out) { auto tcp = net::connect(host, port); auto udp = net::openudp(host, port, "0.0.0.0", port); return std::make_shared(tcp, udp, out); } }