Added basic RDS support, no error correction yet

This commit is contained in:
AlexandreRouma
2022-07-06 22:11:49 +02:00
parent 46f17019a7
commit edf22ccfe8
14 changed files with 992 additions and 28 deletions

View File

@ -0,0 +1,189 @@
#pragma once
#include "../processor.h"
#include "../loop/phase_control_loop.h"
#include "../taps/windowed_sinc.h"
#include "../multirate/polyphase_bank.h"
#include "../math/step.h"
namespace dsp::clock_recovery {
class FD : public Processor<float, float> {
using base_type = Processor<float, float> ;
public:
FD() {}
FD(stream<float>* in, double omega, double omegaGain, double muGain, double omegaRelLimit, int interpPhaseCount = 128, int interpTapCount = 8) { init(in, omega, omegaGain, muGain, omegaRelLimit, interpPhaseCount, interpTapCount); }
~FD() {
if (!base_type::_block_init) { return; }
base_type::stop();
dsp::multirate::freePolyphaseBank(interpBank);
buffer::free(buffer);
}
void init(stream<float>* in, double omega, double omegaGain, double muGain, double omegaRelLimit, int interpPhaseCount = 128, int interpTapCount = 8) {
_omega = omega;
_omegaGain = omegaGain;
_muGain = muGain;
_omegaRelLimit = omegaRelLimit;
_interpPhaseCount = interpPhaseCount;
_interpTapCount = interpTapCount;
pcl.init(_muGain, _omegaGain, 0.0, 0.0, 1.0, _omega, _omega * (1.0 - omegaRelLimit), _omega * (1.0 + omegaRelLimit));
generateInterpTaps();
buffer = buffer::alloc<float>(STREAM_BUFFER_SIZE + _interpTapCount);
bufStart = &buffer[_interpTapCount - 1];
base_type::init(in);
}
void setOmega(double omega) {
assert(base_type::_block_init);
std::lock_guard<std::recursive_mutex> lck(base_type::ctrlMtx);
base_type::tempStop();
_omega = omega;
offset = 0;
pcl.phase = 0.0f;
pcl.freq = _omega;
pcl.setFreqLimits(_omega * (1.0 - _omegaRelLimit), _omega * (1.0 + _omegaRelLimit));
base_type::tempStart();
}
void setOmegaGain(double omegaGain) {
assert(base_type::_block_init);
std::lock_guard<std::recursive_mutex> lck(base_type::ctrlMtx);
_omegaGain = omegaGain;
pcl.setCoefficients(_muGain, _omegaGain);
}
void setMuGain(double muGain) {
assert(base_type::_block_init);
std::lock_guard<std::recursive_mutex> lck(base_type::ctrlMtx);
_muGain = muGain;
pcl.setCoefficients(_muGain, _omegaGain);
}
void setOmegaRelLimit(double omegaRelLimit) {
assert(base_type::_block_init);
std::lock_guard<std::recursive_mutex> lck(base_type::ctrlMtx);
_omegaRelLimit = omegaRelLimit;
pcl.setFreqLimits(_omega * (1.0 - _omegaRelLimit), _omega * (1.0 + _omegaRelLimit));
}
void setInterpParams(int interpPhaseCount, int interpTapCount) {
assert(base_type::_block_init);
std::lock_guard<std::recursive_mutex> lck(base_type::ctrlMtx);
base_type::tempStop();
_interpPhaseCount = interpPhaseCount;
_interpTapCount = interpTapCount;
dsp::multirate::freePolyphaseBank(interpBank);
buffer::free(buffer);
generateInterpTaps();
buffer = buffer::alloc<float>(STREAM_BUFFER_SIZE + _interpTapCount);
bufStart = &buffer[_interpTapCount - 1];
base_type::tempStart();
}
void reset() {
assert(base_type::_block_init);
std::lock_guard<std::recursive_mutex> lck(base_type::ctrlMtx);
base_type::tempStop();
offset = 0;
pcl.phase = 0.0f;
pcl.freq = _omega;
base_type::tempStart();
}
inline int process(int count, const float* in, float* out) {
// Copy data to work buffer
memcpy(bufStart, in, count * sizeof(float));
// Process all samples
int outCount = 0;
while (offset < count) {
float error;
float outVal;
float dfdt;
// Calculate new output value
int phase = std::clamp<int>(floorf(pcl.phase * (float)_interpPhaseCount), 0, _interpPhaseCount - 1);
volk_32f_x2_dot_prod_32f(&outVal, &buffer[offset], interpBank.phases[phase], _interpTapCount);
out[outCount++] = outVal;
// Calculate derivative of the signal
if (phase == 0) {
float fT1;
volk_32f_x2_dot_prod_32f(&fT1, &buffer[offset], interpBank.phases[phase+1], _interpTapCount);
dfdt = fT1 - outVal;
}
else if (phase == _interpPhaseCount - 1) {
float fT_1;
volk_32f_x2_dot_prod_32f(&fT_1, &buffer[offset], interpBank.phases[phase-1], _interpTapCount);
dfdt = outVal - fT_1;
}
else {
float fT_1;
float fT1;
volk_32f_x2_dot_prod_32f(&fT_1, &buffer[offset], interpBank.phases[phase-1], _interpTapCount);
volk_32f_x2_dot_prod_32f(&fT1, &buffer[offset], interpBank.phases[phase+1], _interpTapCount);
dfdt = (fT1 - fT_1) * 0.5f;
}
// Calculate error
error = dfdt * math::step(outVal);
// Clamp symbol phase error
if (error > 1.0f) { error = 1.0f; }
if (error < -1.0f) { error = -1.0f; }
// Advance symbol offset and phase
pcl.advance(error);
float delta = floorf(pcl.phase);
offset += delta;
pcl.phase -= delta;
}
offset -= count;
// Update delay buffer
memmove(buffer, &buffer[count], (_interpTapCount - 1) * sizeof(float));
return outCount;
}
int run() {
int count = base_type::_in->read();
if (count < 0) { return -1; }
int outCount = process(count, base_type::_in->readBuf, base_type::out.writeBuf);
// Swap if some data was generated
base_type::_in->flush();
if (outCount) {
if (!base_type::out.swap(outCount)) { return -1; }
}
return outCount;
}
loop::PhaseControlLoop<float, false> pcl;
protected:
void generateInterpTaps() {
double bw = 0.5 / (double)_interpPhaseCount;
dsp::tap<float> lp = dsp::taps::windowedSinc<float>(_interpPhaseCount * _interpTapCount, dsp::math::freqToOmega(bw, 1.0), dsp::window::nuttall, _interpPhaseCount);
interpBank = dsp::multirate::buildPolyphaseBank<float>(_interpPhaseCount, lp);
taps::free(lp);
}
dsp::multirate::PolyphaseBank<float> interpBank;
double _omega;
double _omegaGain;
double _muGain;
double _omegaRelLimit;
int _interpPhaseCount;
int _interpTapCount;
int offset = 0;
float* buffer;
float* bufStart;
};
}

View File

@ -178,7 +178,7 @@ namespace dsp::clock_recovery {
}
dsp::multirate::PolyphaseBank<float> interpBank;
loop::PhaseControlLoop<double, false> pcl;
loop::PhaseControlLoop<float, false> pcl;
double _omega;
double _omegaGain;

View File

@ -12,6 +12,7 @@
#include "../math/multiply.h"
#include "../math/add.h"
#include "../math/subtract.h"
#include "../multirate/rational_resampler.h"
namespace dsp::demod {
class BroadcastFM : public Processor<complex_t, stereo_t> {
@ -19,7 +20,7 @@ namespace dsp::demod {
public:
BroadcastFM() {}
BroadcastFM(stream<complex_t>* in, double deviation, double samplerate, bool stereo = true, bool lowPass = true) { init(in, deviation, samplerate, stereo, lowPass); }
BroadcastFM(stream<complex_t>* in, double deviation, double samplerate, bool stereo = true, bool lowPass = true, bool rdsOut = false) { init(in, deviation, samplerate, stereo, lowPass); }
~BroadcastFM() {
if (!base_type::_block_init) { return; }
@ -31,11 +32,12 @@ namespace dsp::demod {
taps::free(audioFirTaps);
}
virtual void init(stream<complex_t>* in, double deviation, double samplerate, bool stereo = true, bool lowPass = true) {
virtual void init(stream<complex_t>* in, double deviation, double samplerate, bool stereo = true, bool lowPass = true, bool rdsOut = false) {
_deviation = deviation;
_samplerate = samplerate;
_stereo = stereo;
_lowPass = lowPass;
_rdsOut = rdsOut;
demod.init(NULL, _deviation, _samplerate);
pilotFirTaps = taps::bandPass<complex_t>(18750.0, 19250.0, 3000.0, _samplerate, true);
@ -47,6 +49,7 @@ namespace dsp::demod {
audioFirTaps = taps::lowPass(15000.0, 4000.0, _samplerate);
alFir.init(NULL, audioFirTaps);
arFir.init(NULL, audioFirTaps);
rdsResamp.init(NULL, samplerate, 5000.0);
lmr = buffer::alloc<float>(STREAM_BUFFER_SIZE);
l = buffer::alloc<float>(STREAM_BUFFER_SIZE);
@ -56,6 +59,7 @@ namespace dsp::demod {
lmrDelay.out.free();
arFir.out.free();
alFir.out.free();
rdsResamp.out.free();
base_type::init(in);
}
@ -88,6 +92,8 @@ namespace dsp::demod {
alFir.setTaps(audioFirTaps);
arFir.setTaps(audioFirTaps);
rdsResamp.setInSamplerate(samplerate);
reset();
base_type::tempStart();
}
@ -110,6 +116,15 @@ namespace dsp::demod {
base_type::tempStart();
}
void setRDSOut(bool rdsOut) {
assert(base_type::_block_init);
std::lock_guard<std::recursive_mutex> lck(base_type::ctrlMtx);
base_type::tempStop();
_rdsOut = rdsOut;
reset();
base_type::tempStart();
}
void reset() {
assert(base_type::_block_init);
std::lock_guard<std::recursive_mutex> lck(base_type::ctrlMtx);
@ -124,7 +139,7 @@ namespace dsp::demod {
base_type::tempStart();
}
inline int process(int count, complex_t* in, stereo_t* out) {
inline int process(int count, complex_t* in, stereo_t* out, int& rdsOutCount, float* rdsout = NULL) {
// Demodulate
demod.process(count, in, demod.out.writeBuf);
if (_stereo) {
@ -139,10 +154,19 @@ namespace dsp::demod {
lprDelay.process(count, demod.out.writeBuf, demod.out.writeBuf);
lmrDelay.process(count, rtoc.out.writeBuf, rtoc.out.writeBuf);
// Double and conjugate PLL output to down convert the L-R signal
math::Multiply<dsp::complex_t>::process(count, pilotPLL.out.writeBuf, pilotPLL.out.writeBuf, pilotPLL.out.writeBuf);
// conjugate PLL output to down convert twice the L-R signal
math::Conjugate::process(count, pilotPLL.out.writeBuf, pilotPLL.out.writeBuf);
math::Multiply<dsp::complex_t>::process(count, rtoc.out.writeBuf, pilotPLL.out.writeBuf, rtoc.out.writeBuf);
math::Multiply<dsp::complex_t>::process(count, rtoc.out.writeBuf, pilotPLL.out.writeBuf, rtoc.out.writeBuf);
// Do RDS demod
if (_rdsOut) {
// Since the PLL output is no longer needed after this, use it as the output
math::Multiply<dsp::complex_t>::process(count, rtoc.out.writeBuf, pilotPLL.out.writeBuf, pilotPLL.out.writeBuf);
convert::ComplexToReal::process(count, pilotPLL.out.writeBuf, rdsout);
volk_32f_s32f_multiply_32f(rdsout, rdsout, 100.0, count);
rdsOutCount = rdsResamp.process(count, rdsout, rdsout);
}
// Convert output back to real for further processing
convert::ComplexToReal::process(count, rtoc.out.writeBuf, lmr);
@ -180,18 +204,25 @@ namespace dsp::demod {
int count = base_type::_in->read();
if (count < 0) { return -1; }
process(count, base_type::_in->readBuf, base_type::out.writeBuf);
int rdsOutCount = 0;
process(count, base_type::_in->readBuf, base_type::out.writeBuf, rdsOutCount, rdsOut.writeBuf);
base_type::_in->flush();
if (!base_type::out.swap(count)) { return -1; }
if (rdsOutCount && _rdsOut) {
if (!rdsOut.swap(rdsOutCount)) { return -1; }
}
return count;
}
stream<float> rdsOut;
protected:
double _deviation;
double _samplerate;
bool _stereo;
bool _lowPass = true;
bool _lowPass;
bool _rdsOut;
Quadrature demod;
tap<complex_t> pilotFirTaps;
@ -203,6 +234,7 @@ namespace dsp::demod {
tap<float> audioFirTaps;
filter::FIR<float, float> arFir;
filter::FIR<float, float> alFir;
multirate::RationalResampler<float> rdsResamp;
float* lmr;
float* l;

View File

@ -0,0 +1,31 @@
#pragma once
#include "../processor.h"
namespace dsp::digital {
class BinarySlicer : public Processor<float, uint8_t> {
using base_type = Processor<float, uint8_t>;
public:
BinarySlicer() {}
BinarySlicer(stream<float> *in) { base_type::init(in); }
static inline int process(int count, const float* in, uint8_t* out) {
// TODO: Switch to volk
for (int i = 0; i < count; i++) {
out[i] = in[i] > 0.0f;
}
return count;
}
int run() {
int count = base_type::_in->read();
if (count < 0) { return -1; }
process(count, base_type::_in->readBuf, base_type::out.writeBuf);
base_type::_in->flush();
if (!base_type::out.swap(count)) { return -1; }
return count;
}
};
}

View File

@ -0,0 +1,64 @@
#pragma once
#include "../processor.h"
namespace dsp::digital {
class DifferentialDecoder : public Processor<uint8_t, uint8_t> {
using base_type = Processor<uint8_t, uint8_t>;
public:
DifferentialDecoder() {}
DifferentialDecoder(stream<uint8_t> *in) { base_type::init(in); }
void init(stream<uint8_t> *in, uint8_t modulus, uint8_t initSym = 0) {
_modulus = modulus;
_initSym = initSym;
last = _initSym;
base_type::init(in);
}
void setModulus(uint8_t modulus) {
assert(base_type::_block_init);
std::lock_guard<std::recursive_mutex> lck(base_type::ctrlMtx);
_modulus = modulus;
}
void setInitSym(uint8_t initSym) {
assert(base_type::_block_init);
std::lock_guard<std::recursive_mutex> lck(base_type::ctrlMtx);
_initSym = initSym;
}
void reset() {
assert(base_type::_block_init);
std::lock_guard<std::recursive_mutex> lck(base_type::ctrlMtx);
base_type::tempStop();
last = _initSym;
base_type::tempStart();
}
inline int process(int count, const uint8_t* in, uint8_t* out) {
for (int i = 0; i < count; i++) {
out[i] = (in[i] - last) % _modulus;
}
return count;
}
int run() {
int count = base_type::_in->read();
if (count < 0) { return -1; }
process(count, base_type::_in->readBuf, base_type::out.writeBuf);
base_type::_in->flush();
if (!base_type::out.swap(count)) { return -1; }
return count;
}
protected:
uint8_t last;
uint8_t _initSym;
uint8_t _modulus;
};
}

View File

@ -0,0 +1,65 @@
#pragma once
#include "../processor.h"
namespace dsp::digital {
class DifferentialDecoder : public Processor<uint8_t, uint8_t> {
using base_type = Processor<uint8_t, uint8_t>;
public:
DifferentialDecoder() {}
DifferentialDecoder(stream<uint8_t> *in) { base_type::init(in); }
void init(stream<uint8_t> *in, uint8_t modulus, uint8_t initSym = 0) {
_modulus = modulus;
_initSym = initSym;
last = _initSym;
base_type::init(in);
}
void setModulus(uint8_t modulus) {
assert(base_type::_block_init);
std::lock_guard<std::recursive_mutex> lck(base_type::ctrlMtx);
_modulus = modulus;
}
void setInitSym(uint8_t initSym) {
assert(base_type::_block_init);
std::lock_guard<std::recursive_mutex> lck(base_type::ctrlMtx);
_initSym = initSym;
}
void reset() {
assert(base_type::_block_init);
std::lock_guard<std::recursive_mutex> lck(base_type::ctrlMtx);
base_type::tempStop();
last = _initSym;
base_type::tempStart();
}
inline int process(int count, const uint8_t* in, uint8_t* out) {
for (int i = 0; i < count; i++) {
out[i] = (in[i] - last + _modulus) % _modulus;
last = in[i];
}
return count;
}
int run() {
int count = base_type::_in->read();
if (count < 0) { return -1; }
process(count, base_type::_in->readBuf, base_type::out.writeBuf);
base_type::_in->flush();
if (!base_type::out.swap(count)) { return -1; }
return count;
}
protected:
uint8_t last;
uint8_t _initSym;
uint8_t _modulus;
};
}

View File

@ -0,0 +1,47 @@
#pragma once
#include "../processor.h"
namespace dsp::digital {
class ManchesterDecoder : public Processor<uint8_t, uint8_t> {
using base_type = Processor<uint8_t, uint8_t>;
public:
ManchesterDecoder() {}
ManchesterDecoder(stream<uint8_t> *in) { base_type::init(in); }
void reset() {
assert(base_type::_block_init);
std::lock_guard<std::recursive_mutex> lck(base_type::ctrlMtx);
base_type::tempStop();
offset = 0;
base_type::tempStart();
}
inline int process(int count, const uint8_t* in, uint8_t* out) {
// TODO: NOT THIS BULLSHIT
int outCount = 0;
for (; offset < count; offset += 2) {
out[outCount++] = in[offset];
}
offset -= count;
return outCount;
}
int run() {
int count = base_type::_in->read();
if (count < 0) { return -1; }
int outCount = process(count, base_type::_in->readBuf, base_type::out.writeBuf);
// Swap if some data was generated
base_type::_in->flush();
if (outCount) {
if (!base_type::out.swap(outCount)) { return -1; }
}
return outCount;
}
protected:
int offset = 0;
};
}

View File

@ -1,13 +1,13 @@
#pragma once
#include <imgui.h>
#include <string>
#include <module.h>
namespace style {
extern ImFont* baseFont;
extern ImFont* bigFont;
extern ImFont* hugeFont;
extern float uiScale;
SDRPP_EXPORT ImFont* baseFont;
SDRPP_EXPORT ImFont* bigFont;
SDRPP_EXPORT ImFont* hugeFont;
SDRPP_EXPORT float uiScale;
bool setDefaultStyle(std::string resDir);
bool loadFonts(std::string resDir);