rewrote DSP

This commit is contained in:
Ryzerth
2020-06-22 16:45:57 +02:00
parent 61ba7f1420
commit b78c2cf415
29 changed files with 1331 additions and 1554 deletions

63
src/dsp/correction.h Normal file
View File

@@ -0,0 +1,63 @@
#pragma once
#include <thread>
#include <dsp/stream.h>
#include <dsp/types.h>
#include <vector>
namespace dsp {
class DCBiasRemover {
public:
DCBiasRemover() {
}
DCBiasRemover(stream<complex_t>* input, int bufferSize) : output(bufferSize * 2) {
_in = input;
_bufferSize = bufferSize;
bypass = false;
}
void init(stream<complex_t>* input, int bufferSize) {
output.init(bufferSize * 2);
_in = input;
_bufferSize = bufferSize;
bypass = false;
}
void start() {
_workerThread = std::thread(_worker, this);
}
stream<complex_t> output;
bool bypass;
private:
static void _worker(DCBiasRemover* _this) {
complex_t* buf = new complex_t[_this->_bufferSize];
float ibias = 0.0f;
float qbias = 0.0f;
while (true) {
_this->_in->read(buf, _this->_bufferSize);
if (_this->bypass) {
_this->output.write(buf, _this->_bufferSize);
continue;
}
for (int i = 0; i < _this->_bufferSize; i++) {
ibias += buf[i].i;
qbias += buf[i].q;
}
ibias /= _this->_bufferSize;
qbias /= _this->_bufferSize;
for (int i = 0; i < _this->_bufferSize; i++) {
buf[i].i -= ibias;
buf[i].q -= qbias;
}
_this->output.write(buf, _this->_bufferSize);
}
}
stream<complex_t>* _in;
int _bufferSize;
std::thread _workerThread;
};
};

198
src/dsp/demodulator.h Normal file
View File

@@ -0,0 +1,198 @@
#pragma once
#include <thread>
#include <dsp/stream.h>
#include <dsp/types.h>
/*
TODO:
- Add a sample rate ajustment function to all demodulators
*/
#define FAST_ATAN2_COEF1 3.1415926535f / 4.0f
#define FAST_ATAN2_COEF2 3.0f * FAST_ATAN2_COEF1
inline float fast_arctan2(float y, float x) {
float abs_y = fabs(y)+1e-10;
float r, angle;
if (x>=0)
{
r = (x - abs_y) / (x + abs_y);
angle = FAST_ATAN2_COEF1 - FAST_ATAN2_COEF1 * r;
}
else
{
r = (x + abs_y) / (abs_y - x);
angle = FAST_ATAN2_COEF2 - FAST_ATAN2_COEF1 * r;
}
if (y < 0) {
return -angle;
}
return angle;
}
namespace dsp {
class FMDemodulator {
public:
FMDemodulator() {
}
FMDemodulator(stream<complex_t>* in, float deviation, long sampleRate, int blockSize) : output(blockSize * 2) {
running = false;
_input = in;
_blockSize = blockSize;
_phase = 0.0f;
_phasorSpeed = (2 * 3.1415926535) / (sampleRate / deviation);
}
void init(stream<complex_t>* in, float deviation, long sampleRate, int blockSize) {
output.init(blockSize * 2);
running = false;
_input = in;
_blockSize = blockSize;
_phase = 0.0f;
_phasorSpeed = (2 * 3.1415926535) / (sampleRate / deviation);
}
void start() {
if (running) {
return;
}
running = true;
_workerThread = std::thread(_worker, this);
}
void stop() {
if (!running) {
return;
}
_input->stopReader();
output.stopWriter();
_workerThread.join();
running = false;
_input->clearReadStop();
output.clearWriteStop();
}
void setBlockSize(int blockSize) {
if (running) {
return;
}
_blockSize = blockSize;
output.setMaxLatency(_blockSize * 2);
}
stream<float> output;
private:
static void _worker(FMDemodulator* _this) {
complex_t* inBuf = new complex_t[_this->_blockSize];
float* outBuf = new float[_this->_blockSize];
float diff = 0;
float currentPhase = 0;
while (true) {
if (_this->_input->read(inBuf, _this->_blockSize) < 0) { return; };
for (int i = 0; i < _this->_blockSize; i++) {
currentPhase = fast_arctan2(inBuf[i].i, inBuf[i].q);
diff = currentPhase - _this->_phase;
if (diff > 3.1415926535f) { diff -= 2 * 3.1415926535f; }
else if (diff <= -3.1415926535f) { diff += 2 * 3.1415926535f; }
outBuf[i] = diff / _this->_phasorSpeed;
_this->_phase = currentPhase;
}
if (_this->output.write(outBuf, _this->_blockSize) < 0) { return; };
}
}
stream<complex_t>* _input;
bool running;
int _blockSize;
float _phase;
float _phasorSpeed;
std::thread _workerThread;
};
class AMDemodulator {
public:
AMDemodulator() {
}
AMDemodulator(stream<complex_t>* in, int blockSize) : output(blockSize * 2) {
running = false;
_input = in;
_blockSize = blockSize;
}
void init(stream<complex_t>* in, int blockSize) {
output.init(blockSize * 2);
running = false;
_input = in;
_blockSize = blockSize;
}
void start() {
if (running) {
return;
}
running = true;
_workerThread = std::thread(_worker, this);
}
void stop() {
if (!running) {
return;
}
_input->stopReader();
output.stopWriter();
_workerThread.join();
running = false;
_input->clearReadStop();
output.clearWriteStop();
}
void setBlockSize(int blockSize) {
if (running) {
return;
}
_blockSize = blockSize;
output.setMaxLatency(_blockSize * 2);
}
stream<float> output;
private:
static void _worker(AMDemodulator* _this) {
complex_t* inBuf = new complex_t[_this->_blockSize];
float* outBuf = new float[_this->_blockSize];
float min, max, amp;
while (true) {
if (_this->_input->read(inBuf, _this->_blockSize) < 0) { break; };
min = INFINITY;
max = 0.0f;
for (int i = 0; i < _this->_blockSize; i++) {
outBuf[i] = sqrt((inBuf[i].i*inBuf[i].i) + (inBuf[i].q*inBuf[i].q));
if (outBuf[i] < min) {
min = outBuf[i];
}
if (outBuf[i] > max) {
max = outBuf[i];
}
}
amp = (max - min);
for (int i = 0; i < _this->_blockSize; i++) {
outBuf[i] = (outBuf[i] - min) / (max - min);
}
if (_this->output.write(outBuf, _this->_blockSize) < 0) { break; };
}
delete[] inBuf;
delete[] outBuf;
}
stream<complex_t>* _input;
bool running;
int _blockSize;
std::thread _workerThread;
};
};

361
src/dsp/filter.h Normal file
View File

@@ -0,0 +1,361 @@
#pragma once
#include <thread>
#include <dsp/stream.h>
#include <dsp/types.h>
#include <vector>
#include <dsp/math.h>
#define GET_FROM_RIGHT_BUF(buffer, delayLine, delayLineSz, n) (((n) < 0) ? delayLine[(delayLineSz) + (n)] : buffer[(n)])
namespace dsp {
inline void BlackmanWindow(std::vector<float>& taps, float sampleRate, float cutoff, float transWidth) {
taps.clear();
float fc = cutoff / sampleRate;
int _M = 4.0f / (transWidth / sampleRate);
if (_M % 2 == 0) { _M++; }
float M = _M;
float sum = 0.0f;
for (int i = 0; i < _M; i++) {
float val = (sin(2.0f * M_PI * fc * ((float)i - (M / 2))) / ((float)i - (M / 2))) * (0.42f - (0.5f * cos(2.0f * M_PI / M)) + (0.8f * cos(4.0f * M_PI / M)));
taps.push_back(val);
sum += val;
}
for (int i = 0; i < M; i++) {
taps[i] /= sum;
}
}
class DecimatingFIRFilter {
public:
DecimatingFIRFilter() {
}
DecimatingFIRFilter(stream<complex_t>* input, std::vector<float> taps, int blockSize, float decim) : output(blockSize * 2) {
output.init(blockSize * 2);
_in = input;
_blockSize = blockSize;
_tapCount = taps.size();
delayBuf = new complex_t[_tapCount];
_taps = new float[_tapCount];
for (int i = 0; i < _tapCount; i++) {
_taps[i] = taps[i];
}
_decim = decim;
for (int i = 0; i < _tapCount; i++) {
delayBuf[i].i = 0.0f;
delayBuf[i].q = 0.0f;
}
running = false;
}
void init(stream<complex_t>* input, std::vector<float>& taps, int blockSize, float decim) {
output.init(blockSize * 2);
_in = input;
_blockSize = blockSize;
_tapCount = taps.size();
delayBuf = new complex_t[_tapCount];
_taps = new float[_tapCount];
for (int i = 0; i < _tapCount; i++) {
_taps[i] = taps[i];
}
_decim = decim;
for (int i = 0; i < _tapCount; i++) {
delayBuf[i].i = 0.0f;
delayBuf[i].q = 0.0f;
}
running = false;
}
void start() {
if (running) {
return;
}
running = true;
_workerThread = std::thread(_worker, this);
}
void stop() {
if (!running) {
return;
}
_in->stopReader();
output.stopWriter();
_workerThread.join();
_in->clearReadStop();
output.clearWriteStop();
running = false;
}
void setTaps(std::vector<float>& taps) {
if (running) {
return;
}
_tapCount = taps.size();
printf("[%d]\n", _tapCount);
delete[] _taps;
delete[] delayBuf;
_taps = new float[_tapCount];
delayBuf = new complex_t[_tapCount];
for (int i = 0; i < _tapCount; i++) {
_taps[i] = taps[i];
}
}
void setInput(stream<complex_t>* input) {
if (running) {
return;
}
_in = input;
}
void setDecimation(float decimation) {
if (running) {
return;
}
_decim = decimation;
output.setMaxLatency((_blockSize * 2) / _decim);
}
void setBlockSize(int blockSize) {
if (running) {
return;
}
_blockSize = blockSize;
output.setMaxLatency((_blockSize * 2) / _decim);
}
stream<complex_t> output;
private:
static void _worker(DecimatingFIRFilter* _this) {
int outputSize = _this->_blockSize / _this->_decim;
complex_t* inBuf = new complex_t[_this->_blockSize];
complex_t* outBuf = new complex_t[outputSize];
float tap = 0.0f;
int delayOff;
void* delayStart = &inBuf[_this->_blockSize - (_this->_tapCount - 1)];
int delaySize = (_this->_tapCount - 1) * sizeof(complex_t);
int blockSize = _this->_blockSize;
int outBufferLength = outputSize * sizeof(complex_t);
int tapCount = _this->_tapCount;
int decim = _this->_decim;
complex_t* delayBuf = _this->delayBuf;
int id = 0;
while (true) {
if (_this->_in->read(inBuf, blockSize) < 0) { break; };
memset(outBuf, 0, outBufferLength);
for (int t = 0; t < tapCount; t++) {
tap = _this->_taps[t];
if (tap == 0.0f) {
continue;
}
delayOff = tapCount - t;
id = 0;
for (int i = 0; i < blockSize; i += decim) {
if (i < t) {
outBuf[id].i += tap * delayBuf[delayOff + i].i;
outBuf[id].q += tap * delayBuf[delayOff + i].q;
id++;
continue;
}
outBuf[id].i += tap * inBuf[i - t].i;
outBuf[id].q += tap * inBuf[i - t].q;
id++;
}
}
memcpy(delayBuf, delayStart, delaySize);
if (_this->output.write(outBuf, outputSize) < 0) { break; };
}
delete[] inBuf;
delete[] outBuf;
}
stream<complex_t>* _in;
complex_t* delayBuf;
int _blockSize;
int _tapCount = 0;
float _decim;
std::thread _workerThread;
float* _taps;
bool running;
};
class FloatDecimatingFIRFilter {
public:
FloatDecimatingFIRFilter() {
}
FloatDecimatingFIRFilter(stream<float>* input, std::vector<float> taps, int blockSize, float decim) : output(blockSize * 2) {
output.init(blockSize * 2);
_in = input;
_blockSize = blockSize;
_tapCount = taps.size();
delayBuf = new float[_tapCount];
_taps = new float[_tapCount];
for (int i = 0; i < _tapCount; i++) {
_taps[i] = taps[i];
}
_decim = decim;
for (int i = 0; i < _tapCount; i++) {
delayBuf[i] = 0.0f;
}
running = false;
}
void init(stream<float>* input, std::vector<float>& taps, int blockSize, float decim) {
output.init(blockSize * 2);
_in = input;
_blockSize = blockSize;
_tapCount = taps.size();
delayBuf = new float[_tapCount];
_taps = new float[_tapCount];
for (int i = 0; i < _tapCount; i++) {
_taps[i] = taps[i];
}
_decim = decim;
for (int i = 0; i < _tapCount; i++) {
delayBuf[i] = 0.0f;
}
running = false;
}
void start() {
if (running) {
return;
}
running = true;
_workerThread = std::thread(_worker, this);
}
void stop() {
if (!running) {
return;
}
_in->stopReader();
output.stopWriter();
_workerThread.join();
_in->clearReadStop();
output.clearWriteStop();
running = false;
}
void setTaps(std::vector<float>& taps) {
if (running) {
return;
}
_tapCount = taps.size();
delete[] _taps;
delete[] delayBuf;
_taps = new float[_tapCount];
delayBuf = new float[_tapCount];
for (int i = 0; i < _tapCount; i++) {
_taps[i] = taps[i];
}
}
void setInput(stream<float>* input) {
if (running) {
return;
}
_in = input;
}
void setDecimation(float decimation) {
if (running) {
return;
}
_decim = decimation;
output.setMaxLatency((_blockSize * 2) / _decim);
}
void setBlockSize(int blockSize) {
if (running) {
return;
}
_blockSize = blockSize;
output.setMaxLatency((_blockSize * 2) / _decim);
}
stream<float> output;
private:
static void _worker(FloatDecimatingFIRFilter* _this) {
int outputSize = _this->_blockSize / _this->_decim;
float* inBuf = new float[_this->_blockSize];
float* outBuf = new float[outputSize];
float tap = 0.0f;
int delayOff;
void* delayStart = &inBuf[_this->_blockSize - (_this->_tapCount - 1)];
int delaySize = (_this->_tapCount - 1) * sizeof(float);
int blockSize = _this->_blockSize;
int outBufferLength = outputSize * sizeof(complex_t);
int tapCount = _this->_tapCount;
int decim = _this->_decim;
float* delayBuf = _this->delayBuf;
int id = 0;
while (true) {
if (_this->_in->read(inBuf, blockSize) < 0) { break; };
memset(outBuf, 0, outBufferLength);
for (int t = 0; t < tapCount; t++) {
tap = _this->_taps[t];
if (tap == 0.0f) {
continue;
}
delayOff = tapCount - t;
id = 0;
for (int i = 0; i < blockSize; i += decim) {
if (i < t) {
outBuf[id] += tap * delayBuf[delayOff + i];
id++;
continue;
}
outBuf[id] += tap * inBuf[i - t];
id++;
}
}
memcpy(delayBuf, delayStart, delaySize);
if (_this->output.write(outBuf, outputSize) < 0) { break; };
}
delete[] inBuf;
delete[] outBuf;
}
stream<float>* _in;
float* delayBuf;
int _blockSize;
int _tapCount = 0;
float _decim;
std::thread _workerThread;
float* _taps;
bool running;
};
};

85
src/dsp/math.h Normal file
View File

@@ -0,0 +1,85 @@
#pragma once
#include <thread>
#include <dsp/stream.h>
#include <dsp/types.h>
#include <volk.h>
#ifndef M_PI
#define M_PI 3.1415926535f
#endif
namespace dsp {
class Multiplier {
public:
Multiplier() {
}
Multiplier(stream<complex_t>* a, stream<complex_t>* b, int blockSize) : output(blockSize * 2) {
_a = a;
_b = b;
_blockSize = blockSize;
}
void init(stream<complex_t>* a, stream<complex_t>* b, int blockSize) {
output.init(blockSize * 2);
_a = a;
_b = b;
_blockSize = blockSize;
}
void start() {
if (running) {
return;
}
running = true;
_workerThread = std::thread(_worker, this);
}
void stop() {
if (!running) {
return;
}
_a->stopReader();
_b->stopReader();
output.stopWriter();
_workerThread.join();
running = false;
_a->clearReadStop();
_b->clearReadStop();
output.clearWriteStop();
}
void setBlockSize(int blockSize) {
if (running) {
return;
}
_blockSize = blockSize;
output.setMaxLatency(blockSize * 2);
}
stream<complex_t> output;
private:
static void _worker(Multiplier* _this) {
complex_t* aBuf = (complex_t*)volk_malloc(sizeof(complex_t) * _this->_blockSize, volk_get_alignment());
complex_t* bBuf = (complex_t*)volk_malloc(sizeof(complex_t) * _this->_blockSize, volk_get_alignment());
complex_t* outBuf = (complex_t*)volk_malloc(sizeof(complex_t) * _this->_blockSize, volk_get_alignment());
while (true) {
if (_this->_a->read(aBuf, _this->_blockSize) < 0) { break; };
if (_this->_b->read(bBuf, _this->_blockSize) < 0) { break; };
volk_32fc_x2_multiply_32fc((lv_32fc_t*)outBuf, (lv_32fc_t*)aBuf, (lv_32fc_t*)bBuf, _this->_blockSize);
if (_this->output.write(outBuf, _this->_blockSize) < 0) { break; };
}
volk_free(aBuf);
volk_free(bBuf);
volk_free(outBuf);
}
stream<complex_t>* _a;
stream<complex_t>* _b;
int _blockSize;
bool running = false;
std::thread _workerThread;
};
};

425
src/dsp/resampling.h Normal file
View File

@@ -0,0 +1,425 @@
#pragma once
#include <thread>
#include <dsp/filter.h>
#include <dsp/stream.h>
#include <dsp/types.h>
#include <numeric>
namespace dsp {
template <class T>
class Interpolator {
public:
Interpolator() {
}
Interpolator(stream<T>* in, float interpolation, int blockSize) : output(blockSize * interpolation * 2) {
_input = in;
_interpolation = interpolation;
_blockSize = blockSize;
}
void init(stream<T>* in, float interpolation, int blockSize) {
output.init(blockSize * 2);
_input = in;
_interpolation = interpolation;
_blockSize = blockSize;
}
void start() {
if (running) {
return;
}
_workerThread = std::thread(_worker, this);
running = true;
}
void stop() {
if (!running) {
return;
}
_input->stopReader();
output.stopWriter();
_workerThread.join();
_input->clearReadStop();
output.clearWriteStop();
running = false;
}
void setInterpolation(float interpolation) {
if (running) {
return;
}
_interpolation = interpolation;
output.setMaxLatency(_blockSize * _interpolation * 2);
}
void setBlockSize(int blockSize) {
if (running) {
return;
}
_blockSize = blockSize;
output.setMaxLatency(_blockSize * _interpolation * 2);
}
void setInput(stream<T>* input) {
if (running) {
return;
}
_input = input;
}
stream<T> output;
private:
static void _worker(Interpolator<T>* _this) {
T* inBuf = new T[_this->_blockSize];
T* outBuf = new T[_this->_blockSize * _this->_interpolation];
int outCount = _this->_blockSize * _this->_interpolation;
while (true) {
if (_this->_input->read(inBuf, _this->_blockSize) < 0) { break; };
for (int i = 0; i < outCount; i++) {
outBuf[i] = inBuf[(int)((float)i / _this->_interpolation)];
}
if (_this->output.write(outBuf, outCount) < 0) { break; };
}
delete[] inBuf;
delete[] outBuf;
}
stream<T>* _input;
int _blockSize;
float _interpolation;
std::thread _workerThread;
bool running = false;
};
class BlockDecimator {
public:
BlockDecimator() {
}
BlockDecimator(stream<complex_t>* in, int skip, int blockSize) : output(blockSize * 2) {
_input = in;
_skip = skip;
_blockSize = blockSize;
}
void init(stream<complex_t>* in, int skip, int blockSize) {
output.init(blockSize * 2);
_input = in;
_skip = skip;
_blockSize = blockSize;
}
void start() {
if (running) {
return;
}
_workerThread = std::thread(_worker, this);
}
void stop() {
if (!running) {
return;
}
_input->stopReader();
output.stopWriter();
_workerThread.join();
_input->clearReadStop();
output.clearWriteStop();
running = false;
}
void setBlockSize(int blockSize) {
if (running) {
return;
}
_blockSize = blockSize;
output.setMaxLatency(blockSize * 2);
}
void setSkip(int skip) {
if (running) {
return;
}
_skip = skip;
}
stream<complex_t> output;
private:
static void _worker(BlockDecimator* _this) {
complex_t* buf = new complex_t[_this->_blockSize];
while (true) {
_this->_input->readAndSkip(buf, _this->_blockSize, _this->_skip);
_this->output.write(buf, _this->_blockSize);
}
}
stream<complex_t>* _input;
int _blockSize;
int _skip;
std::thread _workerThread;
bool running = false;
};
class Resampler {
public:
Resampler() {
}
void init(stream<complex_t>* in, float inputSampleRate, float outputSampleRate, float bandWidth, int blockSize) {
_input = in;
_outputSampleRate = outputSampleRate;
_inputSampleRate = inputSampleRate;
int _gcd = std::gcd((int)inputSampleRate, (int)outputSampleRate);
_interp = outputSampleRate / _gcd;
_decim = inputSampleRate / _gcd;
_blockSize = blockSize;
output = &decim.output;
dsp::BlackmanWindow(_taps, inputSampleRate * _interp, outputSampleRate / 2.0f, outputSampleRate / 2.0f);
interp.init(in, _interp, blockSize);
if (_interp == 1) {
decim.init(in, _taps, blockSize, _decim);
}
else {
decim.init(&interp.output, _taps, blockSize * _interp, _decim);
}
}
void start() {
if (_interp != 1) {
interp.start();
}
decim.start();
running = true;
}
void stop() {
interp.stop();
decim.stop();
running = false;
}
void setInputSampleRate(float inputSampleRate, int blockSize = -1) {
stop();
_inputSampleRate = inputSampleRate;
int _gcd = std::gcd((int)inputSampleRate, (int)_outputSampleRate);
_interp = _outputSampleRate / _gcd;
_decim = inputSampleRate / _gcd;
dsp::BlackmanWindow(_taps, inputSampleRate * _interp, _outputSampleRate / 2.0f, _outputSampleRate / 2.0f);
decim.setTaps(_taps);
interp.setInterpolation(_interp);
decim.setDecimation(_decim);
if (blockSize > 0) {
_blockSize = blockSize;
interp.setBlockSize(_blockSize);
}
decim.setBlockSize(_blockSize * _interp);
if (_interp == 1) {
decim.setInput(_input);
}
else {
decim.setInput(&interp.output);
interp.start();
}
start();
}
void setOutputSampleRate(float outputSampleRate) {
stop();
_outputSampleRate = outputSampleRate;
int _gcd = std::gcd((int)_inputSampleRate, (int)outputSampleRate);
_interp = outputSampleRate / _gcd;
_decim = _inputSampleRate / _gcd;
dsp::BlackmanWindow(_taps, _inputSampleRate * _interp, outputSampleRate / 2.0f, outputSampleRate / 2.0f);
decim.setTaps(_taps);
interp.setInterpolation(_interp);
decim.setDecimation(_decim);
decim.setBlockSize(_blockSize * _interp);
if (_interp == 1) {
decim.setInput(_input);
}
else {
decim.setInput(&interp.output);
}
start();
}
void setBlockSize(int blockSize) {
stop();
_blockSize = blockSize;
interp.setBlockSize(_blockSize);
decim.setBlockSize(_blockSize * _interp);
start();
}
void setInput(stream<complex_t>* input) {
if (running) {
return;
}
_input = input;
interp.setInput(_input);
if (_interp == 1) {
decim.setInput(_input);
}
}
stream<complex_t>* output;
private:
Interpolator<complex_t> interp;
DecimatingFIRFilter decim;
stream<complex_t>* _input;
std::vector<float> _taps;
int _interp;
int _decim;
float _outputSampleRate;
float _inputSampleRate;
float _blockSize;
bool running = false;
};
class FloatResampler {
public:
FloatResampler() {
}
void init(stream<float>* in, float inputSampleRate, float outputSampleRate, float bandWidth, int blockSize) {
_input = in;
_outputSampleRate = outputSampleRate;
_inputSampleRate = inputSampleRate;
int _gcd = std::gcd((int)inputSampleRate, (int)outputSampleRate);
_interp = outputSampleRate / _gcd;
_decim = inputSampleRate / _gcd;
_blockSize = blockSize;
output = &decim.output;
dsp::BlackmanWindow(_taps, inputSampleRate * _interp, outputSampleRate / 2.0f, outputSampleRate / 2.0f);
interp.init(in, _interp, blockSize);
if (_interp == 1) {
decim.init(in, _taps, blockSize, _decim);
}
else {
decim.init(&interp.output, _taps, blockSize * _interp, _decim);
}
}
void start() {
if (_interp != 1) {
interp.start();
}
decim.start();
running = true;
}
void stop() {
interp.stop();
decim.stop();
running = false;
}
void setInputSampleRate(float inputSampleRate, int blockSize = -1) {
stop();
_inputSampleRate = inputSampleRate;
int _gcd = std::gcd((int)inputSampleRate, (int)_outputSampleRate);
_interp = _outputSampleRate / _gcd;
_decim = inputSampleRate / _gcd;
dsp::BlackmanWindow(_taps, inputSampleRate * _interp, _outputSampleRate / 2.0f, _outputSampleRate / 2.0f);
decim.setTaps(_taps);
interp.setInterpolation(_interp);
decim.setDecimation(_decim);
if (blockSize > 0) {
_blockSize = blockSize;
interp.setBlockSize(_blockSize);
}
decim.setBlockSize(_blockSize * _interp);
if (_interp == 1) {
decim.setInput(_input);
}
else {
decim.setInput(&interp.output);
}
start();
}
void setOutputSampleRate(float outputSampleRate) {
stop();
_outputSampleRate = outputSampleRate;
int _gcd = std::gcd((int)_inputSampleRate, (int)outputSampleRate);
_interp = outputSampleRate / _gcd;
_decim = _inputSampleRate / _gcd;
dsp::BlackmanWindow(_taps, _inputSampleRate * _interp, outputSampleRate / 2.0f, outputSampleRate / 2.0f);
decim.setTaps(_taps);
interp.setInterpolation(_interp);
decim.setDecimation(_decim);
decim.setBlockSize(_blockSize * _interp);
if (_interp == 1) {
decim.setInput(_input);
}
else {
decim.setInput(&interp.output);
}
start();
}
void setBlockSize(int blockSize) {
stop();
_blockSize = blockSize;
interp.setBlockSize(_blockSize);
decim.setBlockSize(_blockSize * _interp);
start();
}
void setInput(stream<float>* input) {
if (running) {
return;
}
_input = input;
interp.setInput(_input);
if (_interp == 1) {
decim.setInput(_input);
}
}
stream<float>* output;
private:
Interpolator<float> interp;
FloatDecimatingFIRFilter decim;
stream<float>* _input;
std::vector<float> _taps;
int _interp;
int _decim;
float _outputSampleRate;
float _inputSampleRate;
float _blockSize;
bool running = false;
};
};

49
src/dsp/routing.h Normal file
View File

@@ -0,0 +1,49 @@
#pragma once
#include <thread>
#include <dsp/stream.h>
#include <dsp/types.h>
#include <vector>
namespace dsp {
class Splitter {
public:
Splitter() {
}
Splitter(stream<complex_t>* input, int bufferSize) {
_in = input;
_bufferSize = bufferSize;
output_a.init(bufferSize);
output_b.init(bufferSize);
}
void init(stream<complex_t>* input, int bufferSize) {
_in = input;
_bufferSize = bufferSize;
output_a.init(bufferSize);
output_b.init(bufferSize);
}
void start() {
_workerThread = std::thread(_worker, this);
}
stream<complex_t> output_a;
stream<complex_t> output_b;
private:
static void _worker(Splitter* _this) {
complex_t* buf = new complex_t[_this->_bufferSize];
while (true) {
_this->_in->read(buf, _this->_bufferSize);
_this->output_a.write(buf, _this->_bufferSize);
_this->output_b.write(buf, _this->_bufferSize);
}
}
stream<complex_t>* _in;
int _bufferSize;
std::thread _workerThread;
};
};

118
src/dsp/sink.h Normal file
View File

@@ -0,0 +1,118 @@
#pragma once
#include <thread>
#include <dsp/stream.h>
#include <dsp/types.h>
#include <vector>
namespace dsp {
class HandlerSink {
public:
HandlerSink() {
}
HandlerSink(stream<complex_t>* input, complex_t* buffer, int bufferSize, void handler(complex_t*)) {
_in = input;
_bufferSize = bufferSize;
_buffer = buffer;
_handler = handler;
}
void init(stream<complex_t>* input, complex_t* buffer, int bufferSize, void handler(complex_t*)) {
_in = input;
_bufferSize = bufferSize;
_buffer = buffer;
_handler = handler;
}
void start() {
_workerThread = std::thread(_worker, this);
}
bool bypass;
private:
static void _worker(HandlerSink* _this) {
while (true) {
_this->_in->read(_this->_buffer, _this->_bufferSize);
_this->_handler(_this->_buffer);
}
}
stream<complex_t>* _in;
int _bufferSize;
complex_t* _buffer;
std::thread _workerThread;
void (*_handler)(complex_t*);
};
class NullSink {
public:
NullSink() {
}
NullSink(stream<complex_t>* input, int bufferSize) {
_in = input;
_bufferSize = bufferSize;
}
void init(stream<complex_t>* input, int bufferSize) {
_in = input;
_bufferSize = bufferSize;
}
void start() {
_workerThread = std::thread(_worker, this);
}
bool bypass;
private:
static void _worker(NullSink* _this) {
complex_t* buf = new complex_t[_this->_bufferSize];
while (true) {
_this->_in->read(buf, _this->_bufferSize);
}
}
stream<complex_t>* _in;
int _bufferSize;
std::thread _workerThread;
};
class FloatNullSink {
public:
FloatNullSink() {
}
FloatNullSink(stream<float>* input, int bufferSize) {
_in = input;
_bufferSize = bufferSize;
}
void init(stream<float>* input, int bufferSize) {
_in = input;
_bufferSize = bufferSize;
}
void start() {
_workerThread = std::thread(_worker, this);
}
bool bypass;
private:
static void _worker(FloatNullSink* _this) {
float* buf = new float[_this->_bufferSize];
while (true) {
_this->_in->read(buf, _this->_bufferSize);
}
}
stream<float>* _in;
int _bufferSize;
std::thread _workerThread;
};
};

82
src/dsp/source.h Normal file
View File

@@ -0,0 +1,82 @@
#pragma once
#include <thread>
#include <dsp/stream.h>
#include <dsp/types.h>
#include <volk.h>
namespace dsp {
class SineSource {
public:
SineSource() {
}
SineSource(float frequency, long sampleRate, int blockSize) : output(blockSize * 2) {
_blockSize = blockSize;
_sampleRate = sampleRate;
_phasorSpeed = (2 * 3.1415926535) / (sampleRate / frequency);
_phase = 0;
}
void init(float frequency, long sampleRate, int blockSize) {
output.init(blockSize * 2);
_sampleRate = sampleRate;
_blockSize = blockSize;
_phasorSpeed = (2 * 3.1415926535) / (sampleRate / frequency);
_phase = 0;
}
void start() {
if (running) {
return;
}
_workerThread = std::thread(_worker, this);
running = true;
}
void stop() {
if (!running) {
return;
}
output.stopWriter();
_workerThread.join();
output.clearWriteStop();
running = false;
}
void setFrequency(float frequency) {
_phasorSpeed = (2 * 3.1415926535) / (_sampleRate / frequency);
}
void setBlockSize(int blockSize) {
if (running) {
return;
}
_blockSize = blockSize;
}
stream<complex_t> output;
private:
static void _worker(SineSource* _this) {
complex_t* outBuf = new complex_t[_this->_blockSize];
while (true) {
for (int i = 0; i < _this->_blockSize; i++) {
_this->_phase += _this->_phasorSpeed;
outBuf[i].i = sin(_this->_phase);
outBuf[i].q = cos(_this->_phase);
}
_this->_phase = fmodf(_this->_phase, 2.0f * 3.1415926535);
if (_this->output.write(outBuf, _this->_blockSize) < 0) { break; };
}
delete[] outBuf;
}
int _blockSize;
float _phasorSpeed;
float _phase;
long _sampleRate;
std::thread _workerThread;
bool running = false;
};
};

222
src/dsp/stream.h Normal file
View File

@@ -0,0 +1,222 @@
#pragma once
#include <condition_variable>
#include <algorithm>
#include <math.h>
#define STREAM_BUF_SZ 1000000
namespace dsp {
template <class T>
class stream {
public:
stream() {
}
stream(int maxLatency) {
size = STREAM_BUF_SZ;
_buffer = new T[size];
_stopReader = false;
_stopWriter = false;
this->maxLatency = maxLatency;
writec = 0;
readc = size - 1;
}
void init(int maxLatency) {
size = STREAM_BUF_SZ;
_buffer = new T[size];
_stopReader = false;
_stopWriter = false;
this->maxLatency = maxLatency;
writec = 0;
readc = size - 1;
}
int read(T* data, int len) {
int dataRead = 0;
while (dataRead < len) {
int canRead = waitUntilReadable();
if (canRead < 0) {
if (_stopReader) {
printf("Stop reader set");
}
else {
printf("Stop not set");
}
clearReadStop();
return -1;
}
int toRead = std::min(canRead, len - dataRead);
int len1 = (toRead >= (size - readc) ? (size - readc) : (toRead));
memcpy(&data[dataRead], &_buffer[readc], len1 * sizeof(T));
if (len1 < toRead) {
memcpy(&data[dataRead + len1], _buffer, (toRead - len1) * sizeof(T));
}
dataRead += toRead;
readc_mtx.lock();
readc = (readc + toRead) % size;
readc_mtx.unlock();
canWriteVar.notify_one();
}
return len;
}
int readAndSkip(T* data, int len, int skip) {
int dataRead = 0;
while (dataRead < len) {
int canRead = waitUntilReadable();
if (canRead < 0) {
clearReadStop();
return -1;
}
int toRead = std::min(canRead, len - dataRead);
int len1 = (toRead >= (size - readc) ? (size - readc) : (toRead));
memcpy(&data[dataRead], &_buffer[readc], len1 * sizeof(T));
if (len1 < toRead) {
memcpy(&data[dataRead + len1], _buffer, (toRead - len1) * sizeof(T));
}
dataRead += toRead;
readc_mtx.lock();
readc = (readc + toRead) % size;
readc_mtx.unlock();
canWriteVar.notify_one();
}
// Skip
dataRead = 0;
while (dataRead < skip) {
int canRead = waitUntilReadable();
int toRead = std::min(canRead, skip - dataRead);
dataRead += toRead;
readc_mtx.lock();
readc = (readc + toRead) % size;
readc_mtx.unlock();
canWriteVar.notify_one();
}
return len;
}
int waitUntilReadable() {
int canRead = readable();
if (canRead > 0) {
return canRead;
}
std::unique_lock<std::mutex> lck(writec_mtx);
canReadVar.wait(lck, [=](){ return ((this->readable(false) > 0) || this->getReadStop()); });
if (this->getReadStop()) {
return -1;
}
return this->readable(false);
}
int readable(bool lock = true) {
if (lock) { writec_mtx.lock(); }
int _wc = writec;
if (lock) { writec_mtx.unlock(); }
int readable = (_wc - readc) % this->size;
if (_wc < readc) {
readable = (this->size + readable);
}
return readable - 1;
}
int write(T* data, int len) {
int dataWrite = 0;
while (dataWrite < len) {
int canWrite = waitUntilWriteable();
if (canWrite < 0) {
clearWriteStop();
return -1;
}
int toWrite = std::min(canWrite, len - dataWrite);
int len1 = (toWrite >= (size - writec) ? (size - writec) : (toWrite));
memcpy(&_buffer[writec], &data[dataWrite], len1 * sizeof(T));
if (len1 < toWrite) {
memcpy(_buffer, &data[dataWrite + len1], (toWrite - len1) * sizeof(T));
}
dataWrite += toWrite;
writec_mtx.lock();
writec = (writec + toWrite) % size;
writec_mtx.unlock();
canReadVar.notify_one();
}
return len;
}
int waitUntilWriteable() {
int canWrite = writeable();
if (canWrite > 0) {
return canWrite;
}
std::unique_lock<std::mutex> lck(readc_mtx);
canWriteVar.wait(lck, [=](){ return ((this->writeable(false) > 0) || this->getWriteStop()); });
if (this->getWriteStop()) {
return -1;
}
return this->writeable(false);
}
int writeable(bool lock = true) {
if (lock) { readc_mtx.lock(); }
int _rc = readc;
if (lock) { readc_mtx.unlock(); }
int writeable = (_rc - writec) % this->size;
if (_rc < writec) {
writeable = (this->size + writeable);
}
return std::min<float>(writeable - 1, maxLatency - readable(false) - 1);
}
void stopReader() {
_stopReader = true;
canReadVar.notify_one();
}
void stopWriter() {
_stopWriter = true;
canWriteVar.notify_one();
}
bool getReadStop() {
return _stopReader;
}
bool getWriteStop() {
return _stopWriter;
}
void clearReadStop() {
_stopReader = false;
}
void clearWriteStop() {
_stopWriter = false;
}
void setMaxLatency(int maxLatency) {
this->maxLatency = maxLatency;
}
private:
T* _buffer;
int size;
int readc;
int writec;
int maxLatency;
bool _stopReader;
bool _stopWriter;
std::mutex readc_mtx;
std::mutex writec_mtx;
std::condition_variable canReadVar;
std::condition_variable canWriteVar;
};
};

8
src/dsp/types.h Normal file
View File

@@ -0,0 +1,8 @@
#pragma once
namespace dsp {
struct complex_t {
float q;
float i;
};
};

158
src/dsp/vfo.h Normal file
View File

@@ -0,0 +1,158 @@
#pragma once
#include <dsp/source.h>
#include <dsp/math.h>
#include <dsp/resampling.h>
#include <dsp/filter.h>
namespace dsp {
class VFO {
public:
VFO() {
}
void init(stream<complex_t>* in, float inputSampleRate, float outputSampleRate, float bandWidth, float offset, int blockSize) {
_input = in;
_outputSampleRate = outputSampleRate;
_inputSampleRate = inputSampleRate;
int _gcd = std::gcd((int)inputSampleRate, (int)outputSampleRate);
_interp = outputSampleRate / _gcd;
_decim = inputSampleRate / _gcd;
_bandWidth = bandWidth;
_blockSize = blockSize;
output = &decim.output;
dsp::BlackmanWindow(_taps, inputSampleRate * _interp, bandWidth / 2.0f, bandWidth / 2.0f);
lo.init(offset, inputSampleRate, blockSize);
mixer.init(in, &lo.output, blockSize);
interp.init(&mixer.output, _interp, blockSize);
if (_interp == 1) {
decim.init(&mixer.output, _taps, blockSize, _decim);
}
else {
decim.init(&interp.output, _taps, blockSize * _interp, _decim);
}
}
void start() {
lo.start();
mixer.start();
if (_interp != 1) {
printf("UH OH INTERPOLATOR STARTED :/\n");
interp.start();
}
decim.start();
}
void stop() {
lo.stop();
mixer.stop();
interp.stop();
decim.stop();
}
void setInputSampleRate(float inputSampleRate, int blockSize = -1) {
interp.stop();
decim.stop();
_inputSampleRate = inputSampleRate;
int _gcd = std::gcd((int)inputSampleRate, (int)_outputSampleRate);
_interp = _outputSampleRate / _gcd;
_decim = inputSampleRate / _gcd;
dsp::BlackmanWindow(_taps, inputSampleRate * _interp, _bandWidth / 2.0f, _bandWidth / 2.0f);
interp.setInterpolation(_interp);
decim.setDecimation(_decim);
if (blockSize > 0) {
lo.stop();
mixer.stop();
_blockSize = blockSize;
lo.setBlockSize(_blockSize);
mixer.setBlockSize(_blockSize);
interp.setBlockSize(_blockSize);
lo.start();
mixer.start();
}
decim.setBlockSize(_blockSize * _interp);
if (_interp == 1) {
decim.setInput(&mixer.output);
}
else {
decim.setInput(&interp.output);
interp.start();
}
decim.start();
}
void setOutputSampleRate(float outputSampleRate, float bandWidth = -1) {
interp.stop();
decim.stop();
if (bandWidth > 0) {
_bandWidth = bandWidth;
}
_outputSampleRate = outputSampleRate;
int _gcd = std::gcd((int)_inputSampleRate, (int)outputSampleRate);
_interp = outputSampleRate / _gcd;
_decim = _inputSampleRate / _gcd;
dsp::BlackmanWindow(_taps, _inputSampleRate * _interp, _bandWidth / 2.0f, _bandWidth / 2.0f);
decim.setTaps(_taps);
interp.setInterpolation(_interp);
decim.setDecimation(_decim);
decim.setBlockSize(_blockSize * _interp);
if (_interp == 1) {
decim.setInput(&mixer.output);
}
else {
decim.setInput(&interp.output);
interp.start();
}
decim.start();
}
void setBandwidth(float bandWidth) {
decim.stop();
dsp::BlackmanWindow(_taps, _inputSampleRate * _interp, _bandWidth / 2.0f, _bandWidth / 2.0f);
decim.setTaps(_taps);
decim.start();
}
void setOffset(float offset) {
lo.setFrequency(-offset);
}
void setBlockSize(int blockSize) {
stop();
_blockSize = blockSize;
lo.setBlockSize(_blockSize);
mixer.setBlockSize(_blockSize);
interp.setBlockSize(_blockSize);
decim.setBlockSize(_blockSize * _interp);
start();
}
stream<complex_t>* output;
private:
SineSource lo;
Multiplier mixer;
Interpolator<complex_t> interp;
DecimatingFIRFilter decim;
stream<complex_t>* _input;
std::vector<float> _taps;
int _interp;
int _decim;
float _outputSampleRate;
float _inputSampleRate;
float _bandWidth;
float _blockSize;
};
};