SDRPlusPlus/src/dsp/stream.h

222 lines
6.6 KiB
C
Raw Normal View History

2020-06-10 04:13:56 +02:00
#pragma once
#include <condition_variable>
#include <algorithm>
#include <math.h>
2020-06-22 16:45:57 +02:00
#define STREAM_BUF_SZ 1000000
namespace dsp {
2020-06-10 04:13:56 +02:00
template <class T>
class stream {
public:
2020-06-10 18:52:07 +02:00
stream() {
}
2020-06-22 16:45:57 +02:00
stream(int maxLatency) {
size = STREAM_BUF_SZ;
2020-06-10 04:13:56 +02:00
_buffer = new T[size];
2020-06-15 15:53:45 +02:00
_stopReader = false;
_stopWriter = false;
2020-06-22 16:45:57 +02:00
this->maxLatency = maxLatency;
2020-06-10 04:13:56 +02:00
writec = 0;
readc = size - 1;
2020-06-10 18:52:07 +02:00
}
2020-06-22 16:45:57 +02:00
void init(int maxLatency) {
size = STREAM_BUF_SZ;
2020-06-10 18:52:07 +02:00
_buffer = new T[size];
2020-06-15 15:53:45 +02:00
_stopReader = false;
_stopWriter = false;
2020-06-22 16:45:57 +02:00
this->maxLatency = maxLatency;
2020-06-10 18:52:07 +02:00
writec = 0;
readc = size - 1;
2020-06-10 04:13:56 +02:00
}
2020-06-15 15:53:45 +02:00
int read(T* data, int len) {
2020-06-10 04:13:56 +02:00
int dataRead = 0;
while (dataRead < len) {
int canRead = waitUntilReadable();
2020-06-15 15:53:45 +02:00
if (canRead < 0) {
if (_stopReader) {
printf("Stop reader set");
}
else {
printf("Stop not set");
}
clearReadStop();
return -1;
}
2020-06-10 04:13:56 +02:00
int toRead = std::min(canRead, len - dataRead);
int len1 = (toRead >= (size - readc) ? (size - readc) : (toRead));
memcpy(&data[dataRead], &_buffer[readc], len1 * sizeof(T));
if (len1 < toRead) {
memcpy(&data[dataRead + len1], _buffer, (toRead - len1) * sizeof(T));
}
dataRead += toRead;
readc_mtx.lock();
readc = (readc + toRead) % size;
readc_mtx.unlock();
canWriteVar.notify_one();
}
2020-06-22 16:45:57 +02:00
return len;
2020-06-10 04:13:56 +02:00
}
2020-06-15 15:53:45 +02:00
int readAndSkip(T* data, int len, int skip) {
2020-06-10 04:13:56 +02:00
int dataRead = 0;
while (dataRead < len) {
int canRead = waitUntilReadable();
2020-06-15 15:53:45 +02:00
if (canRead < 0) {
clearReadStop();
return -1;
}
2020-06-10 04:13:56 +02:00
int toRead = std::min(canRead, len - dataRead);
int len1 = (toRead >= (size - readc) ? (size - readc) : (toRead));
memcpy(&data[dataRead], &_buffer[readc], len1 * sizeof(T));
if (len1 < toRead) {
memcpy(&data[dataRead + len1], _buffer, (toRead - len1) * sizeof(T));
}
dataRead += toRead;
readc_mtx.lock();
readc = (readc + toRead) % size;
readc_mtx.unlock();
canWriteVar.notify_one();
}
// Skip
dataRead = 0;
while (dataRead < skip) {
int canRead = waitUntilReadable();
int toRead = std::min(canRead, skip - dataRead);
dataRead += toRead;
readc_mtx.lock();
readc = (readc + toRead) % size;
readc_mtx.unlock();
canWriteVar.notify_one();
}
2020-06-22 16:45:57 +02:00
return len;
2020-06-10 04:13:56 +02:00
}
int waitUntilReadable() {
int canRead = readable();
if (canRead > 0) {
return canRead;
}
std::unique_lock<std::mutex> lck(writec_mtx);
2020-06-15 15:53:45 +02:00
canReadVar.wait(lck, [=](){ return ((this->readable(false) > 0) || this->getReadStop()); });
if (this->getReadStop()) {
return -1;
}
2020-06-10 04:13:56 +02:00
return this->readable(false);
}
int readable(bool lock = true) {
if (lock) { writec_mtx.lock(); }
int _wc = writec;
if (lock) { writec_mtx.unlock(); }
int readable = (_wc - readc) % this->size;
if (_wc < readc) {
readable = (this->size + readable);
}
return readable - 1;
}
2020-06-15 15:53:45 +02:00
int write(T* data, int len) {
2020-06-10 04:13:56 +02:00
int dataWrite = 0;
while (dataWrite < len) {
int canWrite = waitUntilWriteable();
2020-06-15 15:53:45 +02:00
if (canWrite < 0) {
clearWriteStop();
return -1;
}
2020-06-10 04:13:56 +02:00
int toWrite = std::min(canWrite, len - dataWrite);
int len1 = (toWrite >= (size - writec) ? (size - writec) : (toWrite));
memcpy(&_buffer[writec], &data[dataWrite], len1 * sizeof(T));
if (len1 < toWrite) {
memcpy(_buffer, &data[dataWrite + len1], (toWrite - len1) * sizeof(T));
}
dataWrite += toWrite;
writec_mtx.lock();
writec = (writec + toWrite) % size;
writec_mtx.unlock();
canReadVar.notify_one();
}
2020-06-15 15:53:45 +02:00
return len;
2020-06-10 04:13:56 +02:00
}
int waitUntilWriteable() {
int canWrite = writeable();
if (canWrite > 0) {
return canWrite;
}
std::unique_lock<std::mutex> lck(readc_mtx);
2020-06-15 15:53:45 +02:00
canWriteVar.wait(lck, [=](){ return ((this->writeable(false) > 0) || this->getWriteStop()); });
if (this->getWriteStop()) {
return -1;
}
2020-06-10 04:13:56 +02:00
return this->writeable(false);
}
int writeable(bool lock = true) {
if (lock) { readc_mtx.lock(); }
int _rc = readc;
if (lock) { readc_mtx.unlock(); }
int writeable = (_rc - writec) % this->size;
if (_rc < writec) {
writeable = (this->size + writeable);
}
2020-06-22 16:45:57 +02:00
return std::min<float>(writeable - 1, maxLatency - readable(false) - 1);
2020-06-10 04:13:56 +02:00
}
2020-06-15 15:53:45 +02:00
void stopReader() {
_stopReader = true;
canReadVar.notify_one();
}
void stopWriter() {
_stopWriter = true;
canWriteVar.notify_one();
}
bool getReadStop() {
return _stopReader;
}
bool getWriteStop() {
return _stopWriter;
}
void clearReadStop() {
_stopReader = false;
}
void clearWriteStop() {
_stopWriter = false;
}
2020-06-22 16:45:57 +02:00
void setMaxLatency(int maxLatency) {
this->maxLatency = maxLatency;
}
2020-06-10 04:13:56 +02:00
private:
T* _buffer;
int size;
int readc;
int writec;
2020-06-22 16:45:57 +02:00
int maxLatency;
2020-06-15 15:53:45 +02:00
bool _stopReader;
bool _stopWriter;
2020-06-10 04:13:56 +02:00
std::mutex readc_mtx;
std::mutex writec_mtx;
std::condition_variable canReadVar;
std::condition_variable canWriteVar;
};
};