mirror of
https://github.com/AlexandreRouma/SDRPlusPlus.git
synced 2025-01-19 14:43:05 +01:00
280 lines
10 KiB
C
280 lines
10 KiB
C
|
#pragma once
|
||
|
#include <dsp/processor.h>
|
||
|
#include <utils/flog.h>
|
||
|
#include <fftw3.h>
|
||
|
#include "dab_phase_sym.h"
|
||
|
|
||
|
namespace dab {
|
||
|
class CyclicSync : public dsp::Processor<dsp::complex_t, dsp::complex_t> {
|
||
|
using base_type = dsp::Processor<dsp::complex_t, dsp::complex_t>;
|
||
|
public:
|
||
|
CyclicSync() {}
|
||
|
|
||
|
// TODO: The default AGC rate is probably way too fast, plot out the avgCorr to see how much it moves
|
||
|
CyclicSync(dsp::stream<dsp::complex_t>* in, double symbolLength, double cyclicPrefixLength, double samplerate, float agcRate = 1e-3) { init(in, symbolLength, cyclicPrefixLength, samplerate, agcRate); }
|
||
|
|
||
|
void init(dsp::stream<dsp::complex_t>* in, double symbolLength, double cyclicPrefixLength, double samplerate, float agcRate = 1e-3) {
|
||
|
// Computer the number of samples for the symbol and its cyclic prefix
|
||
|
symbolSamps = round(samplerate * symbolLength);
|
||
|
prefixSamps = round(samplerate * cyclicPrefixLength);
|
||
|
|
||
|
// Allocate and clear the delay buffer
|
||
|
delayBuf = dsp::buffer::alloc<dsp::complex_t>(STREAM_BUFFER_SIZE + 64000);
|
||
|
dsp::buffer::clear(delayBuf, symbolSamps);
|
||
|
|
||
|
// Allocate and clear the history buffer
|
||
|
histBuf = dsp::buffer::alloc<dsp::complex_t>(prefixSamps);
|
||
|
dsp::buffer::clear(histBuf, prefixSamps);
|
||
|
|
||
|
// Compute the delay input addresses
|
||
|
delayBufInput = &delayBuf[symbolSamps];
|
||
|
|
||
|
// Compute the correlation AGC configuration
|
||
|
this->agcRate = agcRate;
|
||
|
agcRateInv = 1.0f - agcRate;
|
||
|
|
||
|
base_type::init(in);
|
||
|
}
|
||
|
|
||
|
void reset() {
|
||
|
assert(base_type::_block_init);
|
||
|
std::lock_guard<std::recursive_mutex> lck(base_type::ctrlMtx);
|
||
|
base_type::tempStop();
|
||
|
|
||
|
base_type::tempStart();
|
||
|
}
|
||
|
|
||
|
int run() {
|
||
|
int count = base_type::_in->read();
|
||
|
if (count < 0) { return -1; }
|
||
|
|
||
|
// Copy the data into the normal delay buffer
|
||
|
memcpy(delayBufInput, base_type::_in->readBuf, count * sizeof(dsp::complex_t));
|
||
|
|
||
|
// Flush the input stream
|
||
|
base_type::_in->flush();
|
||
|
|
||
|
// Do cross-correlation
|
||
|
for (int i = 0; i < count; i++) {
|
||
|
// Get the current history slot
|
||
|
dsp::complex_t* slot = &histBuf[histId++];
|
||
|
|
||
|
// Wrap around the history slot index (TODO: Check that the history buffer's length is correct)
|
||
|
histId %= prefixSamps;
|
||
|
|
||
|
// Kick out last value from the correlation
|
||
|
corr -= *slot;
|
||
|
|
||
|
// Save input value and compute the new prodct
|
||
|
dsp::complex_t val = delayBuf[i];
|
||
|
dsp::complex_t prod = val.conj()*delayBuf[i+symbolSamps];
|
||
|
|
||
|
// Add the new value to the correlation
|
||
|
*slot = prod;
|
||
|
|
||
|
// Add the new value to the history buffer
|
||
|
corr += prod;
|
||
|
|
||
|
// Compute sample amplitude
|
||
|
float rcorr = corr.amplitude();
|
||
|
|
||
|
// If a high enough peak is reached, reset the symbol counter
|
||
|
if (rcorr > avgCorr && rcorr > peakCorr) { // Note keeping an average level might not be needed
|
||
|
peakCorr = rcorr;
|
||
|
peakLCorr = lastCorr;
|
||
|
samplesSincePeak = 0;
|
||
|
}
|
||
|
|
||
|
// If this is the sample right after the peak, save it
|
||
|
if (samplesSincePeak == 1) {
|
||
|
peakRCorr = rcorr;
|
||
|
}
|
||
|
|
||
|
// Write the sample to the output
|
||
|
out.writeBuf[samplesSincePeak++] = val;
|
||
|
|
||
|
// If the end of the symbol is reached, send it off
|
||
|
if (samplesSincePeak >= symbolSamps) {
|
||
|
if (!out.swap(symbolSamps)) {
|
||
|
return -1;
|
||
|
}
|
||
|
samplesSincePeak = 0;
|
||
|
peakCorr = 0;
|
||
|
}
|
||
|
|
||
|
// Update the average correlation
|
||
|
lastCorr = rcorr;
|
||
|
|
||
|
// Update the average correlation value
|
||
|
avgCorr = agcRate*rcorr + agcRateInv*avgCorr;
|
||
|
}
|
||
|
|
||
|
// Move unused data
|
||
|
memmove(delayBuf, &delayBuf[count], symbolSamps * sizeof(dsp::complex_t));
|
||
|
|
||
|
return count;
|
||
|
}
|
||
|
|
||
|
protected:
|
||
|
int symbolSamps;
|
||
|
int prefixSamps;
|
||
|
|
||
|
int histId = 0;
|
||
|
dsp::complex_t* histBuf;
|
||
|
|
||
|
dsp::complex_t* delayBuf;
|
||
|
dsp::complex_t* delayBufInput;
|
||
|
|
||
|
dsp::complex_t corr = { 0.0f, 0.0f };
|
||
|
|
||
|
int samplesSincePeak = 0;
|
||
|
float lastCorr = 0.0f;
|
||
|
float peakCorr = 0.0f;
|
||
|
float peakLCorr = 0.0f;
|
||
|
float peakRCorr = 0.0f;
|
||
|
|
||
|
// Note only required for DAB
|
||
|
float avgCorr = 0.0f;
|
||
|
float agcRate;
|
||
|
float agcRateInv;
|
||
|
};
|
||
|
|
||
|
class FrameFreqSync : public dsp::Processor<dsp::complex_t, dsp::complex_t> {
|
||
|
using base_type = dsp::Processor<dsp::complex_t, dsp::complex_t>;
|
||
|
public:
|
||
|
FrameFreqSync() {}
|
||
|
|
||
|
FrameFreqSync(dsp::stream<dsp::complex_t>* in, float agcRate = 0.01f) { init(in, agcRate); }
|
||
|
|
||
|
void init(dsp::stream<dsp::complex_t>* in, float agcRate = 0.01f) {
|
||
|
// Allocate buffers
|
||
|
amps = dsp::buffer::alloc<float>(2048);
|
||
|
conjRef = dsp::buffer::alloc<dsp::complex_t>(2048);
|
||
|
corrIn = (dsp::complex_t*)fftwf_alloc_complex(2048);
|
||
|
corrOut = (dsp::complex_t*)fftwf_alloc_complex(2048);
|
||
|
|
||
|
// Copy the phase reference
|
||
|
memcpy(conjRef, DAB_PHASE_SYM_CONJ, 2048 * sizeof(dsp::complex_t));
|
||
|
|
||
|
// Plan the FFT computation
|
||
|
plan = fftwf_plan_dft_1d(2048, (fftwf_complex*)corrIn, (fftwf_complex*)corrOut, FFTW_FORWARD, FFTW_ESTIMATE);
|
||
|
|
||
|
// Compute the correlation AGC configuration
|
||
|
this->agcRate = agcRate;
|
||
|
agcRateInv = 1.0f - agcRate;
|
||
|
|
||
|
base_type::init(in);
|
||
|
}
|
||
|
|
||
|
void reset() {
|
||
|
assert(base_type::_block_init);
|
||
|
std::lock_guard<std::recursive_mutex> lck(base_type::ctrlMtx);
|
||
|
base_type::tempStop();
|
||
|
|
||
|
base_type::tempStart();
|
||
|
}
|
||
|
|
||
|
int run() {
|
||
|
int count = base_type::_in->read();
|
||
|
if (count < 0) { return -1; }
|
||
|
|
||
|
// Apply frequency shift
|
||
|
lv_32fc_t phase = lv_cmake(1.0f, 0.0f);
|
||
|
lv_32fc_t phaseDelta = lv_cmake(cos(offset), sin(offset));
|
||
|
#if VOLK_VERSION >= 030100
|
||
|
volk_32fc_s32fc_x2_rotator2_32fc((lv_32fc_t*)_in->readBuf, (lv_32fc_t*)_in->readBuf, phaseDelta, &phase, count);
|
||
|
#else
|
||
|
volk_32fc_s32fc_x2_rotator_32fc((lv_32fc_t*)_in->readBuf, (lv_32fc_t*)_in->readBuf, phaseDelta, &phase, count);
|
||
|
#endif
|
||
|
|
||
|
// Compute the amplitude amplitude of all samples
|
||
|
volk_32fc_magnitude_32f(amps, (lv_32fc_t*)_in->readBuf, 2048);
|
||
|
|
||
|
// Compute the average signal level by adding up all values
|
||
|
float level = 0.0f;
|
||
|
volk_32f_accumulator_s32f(&level, amps, 2048);
|
||
|
|
||
|
// Detect a frame sync condition
|
||
|
if (level < avgLvl * 0.5f) {
|
||
|
// Reset symbol counter
|
||
|
sym = 1;
|
||
|
|
||
|
// Update the average level
|
||
|
avgLvl = agcRate*level + agcRateInv*avgLvl;
|
||
|
|
||
|
// Flush the input stream and return
|
||
|
base_type::_in->flush();
|
||
|
return count;
|
||
|
}
|
||
|
|
||
|
// Update the average level
|
||
|
avgLvl = agcRate*level + agcRateInv*avgLvl;
|
||
|
|
||
|
// Handle phase reference
|
||
|
if (sym == 1) {
|
||
|
// Output the symbols (DEBUG ONLY)
|
||
|
memcpy(corrIn, _in->readBuf, 2048 * sizeof(dsp::complex_t));
|
||
|
fftwf_execute(plan);
|
||
|
volk_32fc_magnitude_32f(amps, (lv_32fc_t*)corrOut, 2048);
|
||
|
int outCount = 0;
|
||
|
dsp::complex_t pi4 = { cos(3.1415926535*0.25), sin(3.1415926535*0.25) };
|
||
|
for (int i = -767; i < 768; i++) {
|
||
|
if (!i) { continue; }
|
||
|
int cid0 = ((i-1) >= 0) ? (i-1) : 2048+(i-1);
|
||
|
int cid1 = (i >= 0) ? i : 2048+i;;
|
||
|
out.writeBuf[outCount++] = pi4 * (corrOut[cid1] * corrOut[cid0].conj()) * (1.0f/(amps[cid0]*amps[cid0]));
|
||
|
}
|
||
|
out.swap(outCount);
|
||
|
|
||
|
// Multiply the samples with the conjugated phase reference signal
|
||
|
volk_32fc_x2_multiply_32fc((lv_32fc_t*)corrIn, (lv_32fc_t*)_in->readBuf, (lv_32fc_t*)conjRef, 2048);
|
||
|
|
||
|
// Compute the FFT of the product
|
||
|
fftwf_execute(plan);
|
||
|
|
||
|
// Compute the amplitude of the bins
|
||
|
volk_32fc_magnitude_32f(amps, (lv_32fc_t*)corrOut, 2048);
|
||
|
|
||
|
// Locate highest power bin
|
||
|
uint32_t peakId;
|
||
|
volk_32f_index_max_32u(&peakId, amps, 2048);
|
||
|
|
||
|
// Obtain the value of the bins next to the peak
|
||
|
float peakL = amps[(peakId + 2047) % 2048];
|
||
|
float peakR = amps[(peakId + 1) % 2048];
|
||
|
|
||
|
// Compute the integer frequency offset
|
||
|
float offInt = (peakId < 1024) ? (float)peakId : ((float)peakId - 2048.0f);
|
||
|
|
||
|
// Compute the frequency offset in rad/samp
|
||
|
float off = 3.1415926535f * (offInt + ((peakR - peakL) / (peakR + peakL))) * (1.0f / 1024.0f);
|
||
|
|
||
|
// Run control loop
|
||
|
offset -= 0.1f*off;
|
||
|
flog::debug("Offset: {} Hz, Error: {} Hz, Avg Level: {}", offset * (0.5f/3.1415926535f)*2.048e6, off * (0.5f/3.1415926535f)*2.048e6, avgLvl);
|
||
|
}
|
||
|
|
||
|
// Increment the symbol counter
|
||
|
sym++;
|
||
|
|
||
|
// Flush the input stream and return
|
||
|
base_type::_in->flush();
|
||
|
return count;
|
||
|
}
|
||
|
|
||
|
protected:
|
||
|
fftwf_plan plan;
|
||
|
|
||
|
float* amps;
|
||
|
dsp::complex_t* conjRef;
|
||
|
dsp::complex_t* corrIn;
|
||
|
dsp::complex_t* corrOut;
|
||
|
|
||
|
int sym;
|
||
|
float offset = 0.0f;
|
||
|
|
||
|
float avgLvl = 0.0f;
|
||
|
float agcRate;
|
||
|
float agcRateInv;
|
||
|
};
|
||
|
}
|