298 lines
12 KiB
C
298 lines
12 KiB
C
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <time.h>
|
|
#include <stdlib.h>
|
|
#include "matrix.h"
|
|
|
|
void random_adjacency(const uint64_t vertex_count, uint64_t matrix[vertex_count][vertex_count]) {
|
|
srand(time(NULL));
|
|
|
|
for (uint64_t row_index = 0; row_index < vertex_count; row_index++) {
|
|
for (uint64_t column_index = 0; column_index < vertex_count; column_index++) {
|
|
if (column_index == row_index) {
|
|
matrix[row_index][column_index] = 0;
|
|
continue;
|
|
}
|
|
matrix[row_index][column_index] = rand() % 2;
|
|
}
|
|
}
|
|
}
|
|
|
|
void dfs(const uint64_t vertex_count, const uint64_t adjacency_matrix[vertex_count][vertex_count], const uint64_t vertex, int visited[vertex_count]) {
|
|
visited[vertex] = 1;
|
|
|
|
for (uint64_t neighbor_vertex = 0; neighbor_vertex < vertex_count; neighbor_vertex++) {
|
|
if (adjacency_matrix[vertex][neighbor_vertex] != 1) {
|
|
continue;
|
|
}
|
|
if (visited[neighbor_vertex]) {
|
|
continue;
|
|
}
|
|
dfs(vertex_count, adjacency_matrix, neighbor_vertex, visited);
|
|
}
|
|
}
|
|
|
|
void calculate_distance_matrix(const uint64_t vertex_count, const uint64_t adjacency_matrix[vertex_count][vertex_count], uint64_t distance_matrix[vertex_count][vertex_count]) {
|
|
uint64_t power_matrix[vertex_count][vertex_count];
|
|
uint64_t temp_power_matrix[vertex_count][vertex_count];
|
|
memcpy(power_matrix, adjacency_matrix, vertex_count * vertex_count * sizeof(uint64_t));
|
|
|
|
for (uint64_t row_index = 0; row_index < vertex_count; row_index++) {
|
|
for (uint64_t column_index = 0; column_index < vertex_count; column_index++) {
|
|
if (row_index == column_index) {
|
|
distance_matrix[row_index][column_index] = 0;
|
|
} else if (adjacency_matrix[row_index][column_index] == 1) {
|
|
distance_matrix[row_index][column_index] = 1;
|
|
} else {
|
|
distance_matrix[row_index][column_index] = UINT64_MAX;
|
|
}
|
|
}
|
|
}
|
|
|
|
for(uint64_t k = 2; k <= vertex_count; k++) {
|
|
memcpy(temp_power_matrix, power_matrix, vertex_count * vertex_count * sizeof(uint64_t));
|
|
gemm_basic(vertex_count, vertex_count, adjacency_matrix, vertex_count, vertex_count, temp_power_matrix, power_matrix);
|
|
|
|
for (uint64_t row_index = 0; row_index < vertex_count; row_index++) {
|
|
for (uint64_t column_index = 0; column_index < vertex_count; column_index++) {
|
|
if (power_matrix[row_index][column_index] != 0 && distance_matrix[row_index][column_index] == UINT64_MAX) {
|
|
distance_matrix[row_index][column_index] = k;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
int get_eccentricities(const uint64_t vertex_count, const uint64_t distance_matrix[vertex_count][vertex_count], uint64_t eccentricities[vertex_count]) {
|
|
uint64_t eccentricity;
|
|
|
|
// set all eccentricities to infinity in case this is a disconnected graph
|
|
for (uint64_t index = 0; index < vertex_count; index++) {
|
|
eccentricities[index] = UINT64_MAX;
|
|
}
|
|
|
|
for (uint64_t row_index = 0; row_index < vertex_count; row_index++) {
|
|
eccentricity = 0;
|
|
|
|
for (uint64_t column_index = 0; column_index < vertex_count; column_index++) {
|
|
if (distance_matrix[row_index][column_index] > eccentricity) {
|
|
eccentricity = distance_matrix[row_index][column_index];
|
|
}
|
|
}
|
|
// in case of a disconnected graph
|
|
if (eccentricity == 0) {
|
|
return 1;
|
|
}
|
|
eccentricities[row_index] = eccentricity;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
uint64_t get_radius(const uint64_t vertex_count, const uint64_t eccentricities[vertex_count]) {
|
|
uint64_t radius = UINT64_MAX;
|
|
|
|
for (uint64_t index = 0; index < vertex_count; index++) {
|
|
if (eccentricities[index] < radius) {
|
|
radius = eccentricities[index];
|
|
}
|
|
}
|
|
|
|
return radius;
|
|
}
|
|
|
|
uint64_t get_diameter(const uint64_t vertex_count, const uint64_t eccentricities[vertex_count]) {
|
|
uint64_t diamter = 0;
|
|
|
|
for (uint64_t index = 0; index < vertex_count; index++) {
|
|
if (eccentricities[index] > diamter) {
|
|
diamter = eccentricities[index];
|
|
}
|
|
}
|
|
|
|
return diamter;
|
|
}
|
|
|
|
void get_centre(const uint64_t vertex_count, const uint64_t eccentricities[vertex_count], const uint64_t radius, uint64_t centre[vertex_count]) {
|
|
for (uint64_t index = 0; index < vertex_count; index++) {
|
|
centre[index] = 0;
|
|
}
|
|
|
|
for (uint64_t index = 0; index < vertex_count; index++) {
|
|
if (eccentricities[index] == radius) {
|
|
centre[index] = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
void calculate_path_matrix(const uint64_t vertex_count, const uint64_t adjacency_matrix[vertex_count][vertex_count], uint64_t path_matrix[vertex_count][vertex_count]) {
|
|
uint64_t power_matrix[vertex_count][vertex_count];
|
|
uint64_t temp_power_matrix[vertex_count][vertex_count];
|
|
memcpy(power_matrix, adjacency_matrix, vertex_count * vertex_count * sizeof(uint64_t));
|
|
|
|
for (uint64_t row_index = 0; row_index < vertex_count; row_index++) {
|
|
for (uint64_t column_index = 0; column_index < vertex_count; column_index++) {
|
|
if (row_index == column_index || adjacency_matrix[row_index][column_index] == 1) {
|
|
path_matrix[row_index][column_index] = 1;
|
|
} else {
|
|
path_matrix[row_index][column_index] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
for(uint64_t k = 2; k <= vertex_count; k++) {
|
|
memcpy(temp_power_matrix, power_matrix, vertex_count * vertex_count * sizeof(uint64_t));
|
|
gemm_basic(vertex_count, vertex_count, adjacency_matrix, vertex_count, vertex_count, temp_power_matrix, power_matrix);
|
|
|
|
for (uint64_t row_index = 0; row_index < vertex_count; row_index++) {
|
|
for (uint64_t column_index = 0; column_index < vertex_count; column_index++) {
|
|
if (power_matrix[row_index][column_index] != 0) {
|
|
path_matrix[row_index][column_index] = 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
int contains_component(const uint64_t vertex_count, const uint64_t components[vertex_count][vertex_count], const uint64_t component[vertex_count]) {
|
|
for (uint64_t index = 0; index < vertex_count; index++) {
|
|
if (memcmp(components[index], component, sizeof(components[index])) == 0) {
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void find_components_basic(const uint64_t vertex_count, const uint64_t path_matrix[vertex_count][vertex_count], uint64_t components[vertex_count][vertex_count]) {
|
|
uint64_t component[vertex_count];
|
|
|
|
for (uint64_t row_index = 0; row_index < vertex_count; row_index++) {
|
|
for (uint64_t column_index = 0; column_index < vertex_count; column_index++) {
|
|
components[row_index][column_index] = UINT64_MAX;
|
|
}
|
|
}
|
|
|
|
for (uint64_t row_index = 0; row_index < vertex_count; row_index++) {
|
|
for (uint64_t index = 0; index < vertex_count; index++) {
|
|
component[index] = UINT64_MAX;
|
|
}
|
|
|
|
for (uint64_t column_index = 0; column_index < vertex_count; column_index++) {
|
|
if (path_matrix[row_index][column_index] == 1) {
|
|
component[column_index] = column_index + 1;
|
|
}
|
|
}
|
|
|
|
if (!contains_component(vertex_count, components, component)) {
|
|
for (uint64_t column_index = 0; column_index < vertex_count; column_index++) {
|
|
components[row_index][column_index] = component[column_index];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
uint64_t amount_of_components(const uint64_t vertex_count, const uint64_t components[vertex_count][vertex_count]) {
|
|
uint64_t amount_of_components = 0;
|
|
|
|
for (uint64_t row_index = 0; row_index < vertex_count; row_index++) {
|
|
for (uint64_t column_index = 0; column_index < vertex_count; column_index++) {
|
|
if (components[row_index][column_index] != UINT64_MAX) {
|
|
amount_of_components++;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return amount_of_components;
|
|
}
|
|
|
|
int contains_bridge(const uint64_t vertex_count, const uint64_t bridges[vertex_count][2], const uint64_t bridge[2]) {
|
|
for (uint64_t index = 0; index < vertex_count; index++) {
|
|
if (memcmp(bridges[index], bridge, sizeof(bridges[index])) == 0) {
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void find_bridges_basic(const uint64_t vertex_count, const uint64_t adjacency_matrix[vertex_count][vertex_count],
|
|
const uint64_t components[vertex_count][vertex_count], uint64_t bridges[vertex_count][2]) {
|
|
uint64_t path_matrix[vertex_count][vertex_count];
|
|
uint64_t temp_adjacency_matrix[vertex_count][vertex_count];
|
|
uint64_t temp_components[vertex_count][vertex_count];
|
|
uint64_t bridge[2];
|
|
|
|
for (uint64_t index = 0; index < vertex_count; index++) {
|
|
bridges[index][0] = UINT64_MAX;
|
|
bridges[index][1] = UINT64_MAX;
|
|
}
|
|
|
|
for (uint64_t row_index = 0; row_index < vertex_count; row_index++) {
|
|
for (uint64_t column_index = 0; column_index < vertex_count; column_index++) {
|
|
if (row_index == column_index) {
|
|
continue;
|
|
}
|
|
|
|
if (column_index < row_index) {
|
|
bridge[0] = column_index + 1;
|
|
bridge[1] = row_index + 1;
|
|
} else {
|
|
bridge[0] = row_index + 1;
|
|
bridge[1] = column_index + 1;
|
|
}
|
|
|
|
memcpy(temp_adjacency_matrix, adjacency_matrix, vertex_count * vertex_count * sizeof(uint64_t));
|
|
|
|
temp_adjacency_matrix[row_index][column_index] = 0;
|
|
temp_adjacency_matrix[column_index][row_index] = 0;
|
|
|
|
calculate_path_matrix(vertex_count, temp_adjacency_matrix, path_matrix);
|
|
find_components_basic(vertex_count, path_matrix, temp_components);
|
|
|
|
if (amount_of_components(vertex_count, temp_components) <= amount_of_components(vertex_count, components)) {
|
|
bridge[0] = UINT64_MAX;
|
|
bridge[1] = UINT64_MAX;
|
|
}
|
|
|
|
if (!contains_bridge(vertex_count, bridges, bridge)) {
|
|
bridges[row_index][0] = bridge[0];
|
|
bridges[row_index][1] = bridge[1];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void find_articulations_basic(const uint64_t vertex_count, const uint64_t adjacency_matrix[vertex_count][vertex_count],
|
|
const uint64_t components[vertex_count][vertex_count], uint64_t articulations[vertex_count]) {
|
|
uint64_t path_matrix[vertex_count][vertex_count];
|
|
uint64_t temp_adjacency_matrix[vertex_count][vertex_count];
|
|
uint64_t temp_components[vertex_count][vertex_count];
|
|
|
|
for (uint64_t index = 0; index < vertex_count; index++) {
|
|
articulations[index] = UINT64_MAX;
|
|
}
|
|
|
|
for (uint64_t i = 0; i < vertex_count; i++) {
|
|
memcpy(temp_adjacency_matrix, adjacency_matrix, vertex_count * vertex_count * sizeof(uint64_t));
|
|
|
|
for (uint64_t row_index = 0; row_index < vertex_count; row_index++) {
|
|
for (uint64_t column_index = 0; column_index < vertex_count; column_index++) {
|
|
temp_adjacency_matrix[row_index][i] = 0;
|
|
temp_adjacency_matrix[i][column_index] = 0;
|
|
}
|
|
}
|
|
|
|
calculate_path_matrix(vertex_count, temp_adjacency_matrix, path_matrix);
|
|
find_components_basic(vertex_count, path_matrix, temp_components);
|
|
|
|
// the + 1 is needed because I am not removing the vertex, I am just removing all of its edges
|
|
// removing all of its edges, means it itself becomes a component, which needs to be accounted for
|
|
if (amount_of_components(vertex_count, temp_components) > amount_of_components(vertex_count, components) + 1) {
|
|
articulations[i] = i + 1;
|
|
}
|
|
}
|
|
}
|