rewrite into c++

This commit is contained in:
AustrianToast 2024-10-11 23:45:55 +02:00
parent 2b2ffe9649
commit c88fd5412a
Signed by: AustrianToast
GPG Key ID: 1B4D0AAF6E558816
10 changed files with 863 additions and 931 deletions

481
graph.c
View File

@ -1,481 +0,0 @@
#include "graph.h"
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <time.h>
#include <stdlib.h>
#include "matrix.h"
void random_adjacency(const uint64_t vertex_count, uint64_t matrix[vertex_count][vertex_count]) {
srand(time(NULL));
for (uint64_t row_index = 0; row_index < vertex_count; row_index++) {
for (uint64_t column_index = 0; column_index < vertex_count; column_index++) {
if (column_index == row_index) {
matrix[row_index][column_index] = 0;
} else {
matrix[row_index][column_index] = rand() % 2;
}
}
}
}
void calculate_distance_matrix(const uint64_t vertex_count, const uint64_t adjacency_matrix[vertex_count][vertex_count], uint64_t distance_matrix[vertex_count][vertex_count]) {
uint64_t power_matrix[vertex_count][vertex_count];
uint64_t temp_power_matrix[vertex_count][vertex_count];
memcpy(power_matrix, adjacency_matrix, vertex_count * vertex_count * sizeof(uint64_t));
for (uint64_t row_index = 0; row_index < vertex_count; row_index++) {
for (uint64_t column_index = 0; column_index < vertex_count; column_index++) {
if (row_index == column_index) {
distance_matrix[row_index][column_index] = 0;
} else if (adjacency_matrix[row_index][column_index] == 1) {
distance_matrix[row_index][column_index] = 1;
} else {
distance_matrix[row_index][column_index] = UINT64_MAX;
}
}
}
for(uint64_t k = 2; k <= vertex_count; k++) {
memcpy(temp_power_matrix, power_matrix, vertex_count * vertex_count * sizeof(uint64_t));
gemm_basic(vertex_count, vertex_count, adjacency_matrix, vertex_count, vertex_count, temp_power_matrix, power_matrix);
for (uint64_t row_index = 0; row_index < vertex_count; row_index++) {
for (uint64_t column_index = 0; column_index < vertex_count; column_index++) {
if (power_matrix[row_index][column_index] != 0 && distance_matrix[row_index][column_index] == UINT64_MAX) {
distance_matrix[row_index][column_index] = k;
}
}
}
}
}
int get_eccentricities(const uint64_t vertex_count, const uint64_t distance_matrix[vertex_count][vertex_count], uint64_t eccentricities[vertex_count]) {
uint64_t eccentricity;
// set all eccentricities to infinity in case this is a disconnected graph
for (uint64_t index = 0; index < vertex_count; index++) {
eccentricities[index] = UINT64_MAX;
}
for (uint64_t row_index = 0; row_index < vertex_count; row_index++) {
eccentricity = 0;
for (uint64_t column_index = 0; column_index < vertex_count; column_index++) {
if (distance_matrix[row_index][column_index] > eccentricity) {
eccentricity = distance_matrix[row_index][column_index];
}
}
// in case of a disconnected graph
if (eccentricity == 0) {
return 1;
}
eccentricities[row_index] = eccentricity;
}
return 0;
}
uint64_t get_radius(const uint64_t vertex_count, const uint64_t eccentricities[vertex_count]) {
uint64_t radius = UINT64_MAX;
for (uint64_t index = 0; index < vertex_count; index++) {
if (eccentricities[index] < radius) {
radius = eccentricities[index];
}
}
return radius;
}
uint64_t get_diameter(const uint64_t vertex_count, const uint64_t eccentricities[vertex_count]) {
uint64_t diamter = 0;
for (uint64_t index = 0; index < vertex_count; index++) {
if (eccentricities[index] > diamter) {
diamter = eccentricities[index];
}
}
return diamter;
}
void get_centre(const uint64_t vertex_count, const uint64_t eccentricities[vertex_count], const uint64_t radius, uint64_t centre[vertex_count]) {
memset(centre, 0, vertex_count * sizeof(uint64_t));
for (uint64_t index = 0; index < vertex_count; index++) {
if (eccentricities[index] == radius) {
centre[index] = 1;
}
}
}
void calculate_path_matrix(const uint64_t vertex_count, const uint64_t adjacency_matrix[vertex_count][vertex_count], uint64_t path_matrix[vertex_count][vertex_count]) {
uint64_t power_matrix[vertex_count][vertex_count];
uint64_t temp_power_matrix[vertex_count][vertex_count];
memcpy(power_matrix, adjacency_matrix, vertex_count * vertex_count * sizeof(uint64_t));
for (uint64_t row_index = 0; row_index < vertex_count; row_index++) {
for (uint64_t column_index = 0; column_index < vertex_count; column_index++) {
if (row_index == column_index || adjacency_matrix[row_index][column_index] == 1) {
path_matrix[row_index][column_index] = 1;
} else {
path_matrix[row_index][column_index] = 0;
}
}
}
for(uint64_t k = 2; k <= vertex_count; k++) {
memcpy(temp_power_matrix, power_matrix, vertex_count * vertex_count * sizeof(uint64_t));
gemm_basic(vertex_count, vertex_count, adjacency_matrix, vertex_count, vertex_count, temp_power_matrix, power_matrix);
for (uint64_t row_index = 0; row_index < vertex_count; row_index++) {
for (uint64_t column_index = 0; column_index < vertex_count; column_index++) {
if (power_matrix[row_index][column_index] != 0) {
path_matrix[row_index][column_index] = 1;
}
}
}
}
}
void find_components_basic(const uint64_t vertex_count, const uint64_t path_matrix[vertex_count][vertex_count], uint64_t components[vertex_count][vertex_count]) {
uint64_t component[vertex_count];
int contains_component;
memset(components, 0, vertex_count * vertex_count * sizeof(uint64_t));
for (uint64_t row_index = 0; row_index < vertex_count; row_index++) {
memset(component, 0, vertex_count * sizeof(uint64_t));
contains_component = 0;
for (uint64_t column_index = 0; column_index < vertex_count; column_index++) {
if (path_matrix[row_index][column_index] == 1) {
component[column_index] = column_index + 1;
}
}
for (uint64_t index = 0; index < vertex_count; index++) {
if (memcmp(components[index], component, vertex_count * sizeof(uint64_t)) == 0) {
contains_component = 1;
}
}
if (!contains_component) {
for (uint64_t index = 0; index < vertex_count; index++) {
components[row_index][index] = component[index];
}
}
}
}
void dfs(const uint64_t vertex_count, const uint64_t adjacency_matrix[vertex_count][vertex_count], const uint64_t vertex, uint64_t visited[vertex_count]) {
visited[vertex] = 1;
for (uint64_t neighbor_vertex = 0; neighbor_vertex < vertex_count; neighbor_vertex++) {
if (adjacency_matrix[vertex][neighbor_vertex] != 1) {
continue;
}
if (visited[neighbor_vertex]) {
continue;
}
dfs(vertex_count, adjacency_matrix, neighbor_vertex, visited);
}
}
void find_components_dfs(const uint64_t vertex_count, const uint64_t adjacency_matrix[vertex_count][vertex_count], uint64_t components[vertex_count][vertex_count]) {
uint64_t component[vertex_count];
int contains_component = 0;
memset(components, 0, vertex_count * vertex_count * sizeof(uint64_t));
for (uint64_t vertex = 0; vertex < vertex_count; vertex++) {
memset(component, 0, vertex_count * sizeof(uint64_t));
contains_component = 0;
dfs(vertex_count, adjacency_matrix, vertex, component);
for (uint64_t index = 0; index < vertex_count; index++) {
if (memcmp(components[index], component, vertex_count * sizeof(uint64_t)) == 0) {
contains_component = 1;
}
}
if (!contains_component) {
for (uint64_t index = 0; index < vertex_count; index++) {
components[vertex][index] = component[index];
}
}
}
}
uint64_t amount_of_components(const uint64_t vertex_count, const uint64_t components[vertex_count][vertex_count]) {
uint64_t amount_of_components = 0;
for (uint64_t row_index = 0; row_index < vertex_count; row_index++) {
for (uint64_t column_index = 0; column_index < vertex_count; column_index++) {
if (components[row_index][column_index] != 0) {
amount_of_components++;
break;
}
}
}
return amount_of_components;
}
int contains_bridge(const uint64_t vertex_count, const uint64_t bridges[vertex_count][2], const uint64_t bridge[2]) {
for (uint64_t index = 0; index < vertex_count; index++) {
if (memcmp(bridges[index], bridge, 2 * sizeof(uint64_t)) == 0) {
return 1;
}
}
return 0;
}
void find_bridges_basic(const uint64_t vertex_count, const uint64_t adjacency_matrix[vertex_count][vertex_count],
const uint64_t components[vertex_count][vertex_count], uint64_t bridges[vertex_count][2]) {
uint64_t path_matrix[vertex_count][vertex_count];
uint64_t temp_adjacency_matrix[vertex_count][vertex_count];
uint64_t temp_components[vertex_count][vertex_count];
uint64_t bridge[2];
memset(bridges, 0, vertex_count * 2 * sizeof(uint64_t));
for (uint64_t row_index = 0; row_index < vertex_count; row_index++) {
for (uint64_t column_index = 0; column_index < vertex_count; column_index++) {
if (row_index == column_index) {
continue;
}
if (column_index < row_index) {
bridge[0] = column_index + 1;
bridge[1] = row_index + 1;
} else {
bridge[0] = row_index + 1;
bridge[1] = column_index + 1;
}
memcpy(temp_adjacency_matrix, adjacency_matrix, vertex_count * vertex_count * sizeof(uint64_t));
temp_adjacency_matrix[row_index][column_index] = 0;
temp_adjacency_matrix[column_index][row_index] = 0;
calculate_path_matrix(vertex_count, temp_adjacency_matrix, path_matrix);
find_components_basic(vertex_count, path_matrix, temp_components);
if (amount_of_components(vertex_count, temp_components) > amount_of_components(vertex_count, components) && !contains_bridge(vertex_count, bridges, bridge)) {
bridges[row_index][0] = bridge[0];
bridges[row_index][1] = bridge[1];
}
}
}
print_matrix(vertex_count, 2, bridges);
}
void find_bridges_dfs_v1(const uint64_t vertex_count, const uint64_t adjacency_matrix[vertex_count][vertex_count],
const uint64_t components[vertex_count][vertex_count], uint64_t bridges[vertex_count][2]) {
uint64_t temp_adjacency_matrix[vertex_count][vertex_count];
uint64_t temp_components[vertex_count][vertex_count];
uint64_t bridge[2];
memset(bridges, 0, vertex_count * 2 * sizeof(uint64_t));
for (uint64_t row_index = 0; row_index < vertex_count; row_index++) {
for (uint64_t column_index = 0; column_index < vertex_count; column_index++) {
if (row_index == column_index) {
continue;
}
if (column_index < row_index) {
bridge[0] = column_index + 1;
bridge[1] = row_index + 1;
} else {
bridge[0] = row_index + 1;
bridge[1] = column_index + 1;
}
memcpy(temp_adjacency_matrix, adjacency_matrix, vertex_count * vertex_count * sizeof(uint64_t));
temp_adjacency_matrix[row_index][column_index] = 0;
temp_adjacency_matrix[column_index][row_index] = 0;
find_components_dfs(vertex_count, temp_adjacency_matrix, temp_components);
if (amount_of_components(vertex_count, temp_components) > amount_of_components(vertex_count, components) && !contains_bridge(vertex_count, bridges, bridge)) {
bridges[row_index][0] = bridge[0];
bridges[row_index][1] = bridge[1];
}
}
}
}
void dfs_bridges(const uint64_t vertex_count, const uint64_t adjacency_matrix[vertex_count][vertex_count], const uint64_t vertex, const uint64_t parent_vertex, uint64_t visited[vertex_count],
uint64_t current_time, uint64_t discovery_time[vertex_count], uint64_t lowest_time[vertex_count], uint64_t bridges[vertex_count][2]) {
current_time++;
visited[vertex] = 1;
discovery_time[vertex] = current_time;
lowest_time[vertex] = current_time;
for (uint64_t neighbor_vertex = 0; neighbor_vertex < vertex_count; neighbor_vertex++) {
if (adjacency_matrix[vertex][neighbor_vertex] != 1) {
continue;
}
if (parent_vertex != neighbor_vertex && visited[neighbor_vertex]) {
if (lowest_time[vertex] > discovery_time[neighbor_vertex]) {
lowest_time[vertex] = discovery_time[neighbor_vertex];
}
continue;
}
if (visited[neighbor_vertex]) {
continue;
}
dfs_bridges(vertex_count, adjacency_matrix, neighbor_vertex, vertex, visited, current_time, discovery_time, lowest_time, bridges);
if (lowest_time[vertex] > lowest_time[neighbor_vertex]) {
lowest_time[vertex] = lowest_time[neighbor_vertex];
}
if (discovery_time[vertex] < lowest_time[neighbor_vertex]) {
bridges[neighbor_vertex][0] = vertex + 1;
bridges[neighbor_vertex][1] = neighbor_vertex + 1;
}
}
}
void find_bridges_dfs_v2(const uint64_t vertex_count, const uint64_t adjacency_matrix[vertex_count][vertex_count],
const uint64_t components[vertex_count][vertex_count], uint64_t bridges[vertex_count][2]) {
uint64_t visited[vertex_count];
uint64_t current_time = 0;
uint64_t discovery_time[vertex_count];
uint64_t lowest_time[vertex_count];
memset(bridges, 0, vertex_count * 2 * sizeof(uint64_t));
memset(visited, 0, vertex_count * sizeof(uint64_t));
memset(discovery_time, 0, vertex_count * sizeof(uint64_t));
memset(lowest_time, 0, vertex_count * sizeof(uint64_t));
for (uint64_t vertex = 0; vertex < vertex_count; vertex++) {
if (!visited[vertex]) {
dfs_bridges(vertex_count, adjacency_matrix, vertex, UINT64_MAX, visited, current_time, discovery_time, lowest_time, bridges);
}
}
}
void find_articulations_basic(const uint64_t vertex_count, const uint64_t adjacency_matrix[vertex_count][vertex_count],
const uint64_t components[vertex_count][vertex_count], uint64_t articulations[vertex_count]) {
uint64_t path_matrix[vertex_count][vertex_count];
uint64_t temp_adjacency_matrix[vertex_count][vertex_count];
uint64_t temp_components[vertex_count][vertex_count];
memset(articulations, 0, vertex_count * sizeof(uint64_t));
for (uint64_t i = 0; i < vertex_count; i++) {
memcpy(temp_adjacency_matrix, adjacency_matrix, vertex_count * vertex_count * sizeof(uint64_t));
for (uint64_t row_index = 0; row_index < vertex_count; row_index++) {
for (uint64_t column_index = 0; column_index < vertex_count; column_index++) {
temp_adjacency_matrix[row_index][i] = 0;
temp_adjacency_matrix[i][column_index] = 0;
}
}
calculate_path_matrix(vertex_count, temp_adjacency_matrix, path_matrix);
find_components_basic(vertex_count, path_matrix, temp_components);
// the + 1 is needed because I am not removing the vertex, I am just removing all of its edges
// removing all of its edges, means it itself becomes a component, which needs to be accounted for
if (amount_of_components(vertex_count, temp_components) > amount_of_components(vertex_count, components) + 1) {
articulations[i] = i + 1;
}
}
}
void find_articulations_dfs_v1(const uint64_t vertex_count, const uint64_t adjacency_matrix[vertex_count][vertex_count],
const uint64_t components[vertex_count][vertex_count], uint64_t articulations[vertex_count]) {
uint64_t temp_adjacency_matrix[vertex_count][vertex_count];
uint64_t temp_components[vertex_count][vertex_count];
memset(articulations, 0, vertex_count * sizeof(uint64_t));
for (uint64_t i = 0; i < vertex_count; i++) {
memcpy(temp_adjacency_matrix, adjacency_matrix, vertex_count * vertex_count * sizeof(uint64_t));
for (uint64_t row_index = 0; row_index < vertex_count; row_index++) {
for (uint64_t column_index = 0; column_index < vertex_count; column_index++) {
temp_adjacency_matrix[row_index][i] = 0;
temp_adjacency_matrix[i][column_index] = 0;
}
}
find_components_dfs(vertex_count, temp_adjacency_matrix, temp_components);
// the + 1 is needed because I am not removing the vertex, I am just removing all of its edges
// removing all of its edges, means it itself becomes a component, which needs to be accounted for
if (amount_of_components(vertex_count, temp_components) > amount_of_components(vertex_count, components) + 1) {
articulations[i] = i + 1;
}
}
}
void dfs_articulations(const uint64_t vertex_count, const uint64_t adjacency_matrix[vertex_count][vertex_count], const uint64_t vertex, const uint64_t parent_vertex,
uint64_t visited[vertex_count], uint64_t current_time, uint64_t discovery_time[vertex_count], uint64_t lowest_time[vertex_count],
uint64_t articulations[vertex_count]) {
current_time++;
visited[vertex] = 1;
discovery_time[vertex] = current_time;
lowest_time[vertex] = current_time;
uint64_t child_count = 0;
uint64_t is_articulation = 0;
for (uint64_t neighbor_vertex = 0; neighbor_vertex < vertex_count; neighbor_vertex++) {
if (adjacency_matrix[vertex][neighbor_vertex] != 1) {
continue;
}
if (visited[neighbor_vertex]) {
if (lowest_time[vertex] > discovery_time[neighbor_vertex]) {
lowest_time[vertex] = discovery_time[neighbor_vertex];
}
continue;
}
child_count++;
dfs_articulations(vertex_count, adjacency_matrix, neighbor_vertex, vertex, visited, current_time, discovery_time, lowest_time, articulations);
if (lowest_time[vertex] > lowest_time[neighbor_vertex]) {
lowest_time[vertex] = lowest_time[neighbor_vertex];
}
if (parent_vertex != UINT64_MAX && discovery_time[vertex] <= lowest_time[neighbor_vertex]) {
is_articulation = 1;
}
}
if (parent_vertex == UINT64_MAX && child_count > 1) {
is_articulation = 1;
}
if (is_articulation) {
articulations[vertex] = vertex + 1;
}
}
void find_articulations_dfs_v2(const uint64_t vertex_count, const uint64_t adjacency_matrix[vertex_count][vertex_count],
const uint64_t components[vertex_count][vertex_count], uint64_t articulations[vertex_count]) {
uint64_t visited[vertex_count];
uint64_t current_time = 0;
uint64_t discovery_time[vertex_count];
uint64_t lowest_time[vertex_count];
memset(articulations, 0, vertex_count * sizeof(uint64_t));
memset(visited, 0, vertex_count * sizeof(uint64_t));
memset(discovery_time, 0, vertex_count * sizeof(uint64_t));
memset(lowest_time, 0, vertex_count * sizeof(uint64_t));
for (uint64_t vertex = 0; vertex < vertex_count; vertex++) {
if (!visited[vertex]) {
dfs_articulations(vertex_count, adjacency_matrix, vertex, UINT64_MAX, visited, current_time, discovery_time, lowest_time, articulations);
}
}
}

498
graph.cpp Normal file
View File

@ -0,0 +1,498 @@
#include "matrix.hpp"
#include <stdint.h>
#include <string.h>
#include <time.h>
#include <stdlib.h>
#include <cstdint>
#include <vector>
#include <algorithm>
std::vector<std::vector<uint64_t>> random_adjacency(const uint64_t vertex_count) {
std::vector<std::vector<uint64_t>> adjacency_matrix(vertex_count, std::vector<uint64_t>(vertex_count, 0));
srand(time(NULL));
for (uint64_t row_index = 0; row_index < vertex_count; row_index++) {
for (uint64_t column_index = 0; column_index < vertex_count; column_index++) {
if (column_index != row_index) {
adjacency_matrix[row_index][column_index] = rand() % 2;
}
}
}
return adjacency_matrix;
}
std::vector<std::vector<uint64_t>> calculate_distance_matrix(const std::vector<std::vector<uint64_t>>& adjacency_matrix) {
uint64_t vertex_count = adjacency_matrix.size();
std::vector<std::vector<uint64_t>> distance_matrix(vertex_count, std::vector<uint64_t>(vertex_count, 0));
std::vector<std::vector<uint64_t>> power_matrix(vertex_count, std::vector<uint64_t>(vertex_count, 0));
std::copy(adjacency_matrix.begin(), adjacency_matrix.end(), power_matrix.begin());
for (uint64_t row_index = 0; row_index < vertex_count; row_index++) {
for (uint64_t column_index = 0; column_index < vertex_count; column_index++) {
if (row_index == column_index) {
continue;
} else if (adjacency_matrix[row_index][column_index] == 1) {
distance_matrix[row_index][column_index] = 1;
} else {
distance_matrix[row_index][column_index] = UINT64_MAX;
}
}
}
for(uint64_t k = 2; k <= vertex_count; k++) {
power_matrix = gemm_basic(adjacency_matrix, power_matrix);
for (uint64_t row_index = 0; row_index < vertex_count; row_index++) {
for (uint64_t column_index = 0; column_index < vertex_count; column_index++) {
if (power_matrix[row_index][column_index] != 0 && distance_matrix[row_index][column_index] == UINT64_MAX) {
distance_matrix[row_index][column_index] = k;
}
}
}
}
return distance_matrix;
}
std::vector<uint64_t> get_eccentricities(const std::vector<std::vector<uint64_t>>& distance_matrix) {
uint64_t vertex_count = distance_matrix.size();
std::vector<uint64_t> eccentricities(vertex_count, UINT64_MAX);
uint64_t eccentricity;
for (uint64_t row_index = 0; row_index < vertex_count; row_index++) {
eccentricity = 0;
for (uint64_t column_index = 0; column_index < vertex_count; column_index++) {
if (distance_matrix[row_index][column_index] > eccentricity) {
eccentricity = distance_matrix[row_index][column_index];
}
}
if (eccentricity == 0) {
break;
}
eccentricities[row_index] = eccentricity;
}
return eccentricities;
}
uint64_t get_radius(const std::vector<uint64_t>& eccentricities) {
uint64_t radius = UINT64_MAX;
for (uint64_t index = 0; index < eccentricities.size(); index++) {
if (eccentricities[index] < radius) {
radius = eccentricities[index];
}
}
return radius;
}
uint64_t get_diameter(const std::vector<uint64_t>& eccentricities) {
uint64_t diamter = 0;
for (uint64_t index = 0; index < eccentricities.size(); index++) {
if (eccentricities[index] > diamter) {
diamter = eccentricities[index];
}
}
return diamter;
}
std::vector<uint64_t> get_centre(const std::vector<uint64_t>& eccentricities) {
std::vector<uint64_t> centre;
uint64_t radius = get_radius(eccentricities);
for (uint64_t index = 0; index < eccentricities.size(); index++) {
if (eccentricities[index] == radius) {
centre.push_back(index + 1);
}
}
centre.shrink_to_fit();
return centre;
}
std::vector<std::vector<uint64_t>> calculate_path_matrix(const std::vector<std::vector<uint64_t>>& adjacency_matrix) {
uint64_t vertex_count = adjacency_matrix.size();
std::vector<std::vector<uint64_t>> path_matrix(vertex_count, std::vector<uint64_t>(vertex_count, 0));
std::vector<std::vector<uint64_t>> power_matrix(vertex_count, std::vector<uint64_t>(vertex_count, 0));
std::copy(adjacency_matrix.begin(), adjacency_matrix.end(), power_matrix.begin());
for (uint64_t row_index = 0; row_index < vertex_count; row_index++) {
for (uint64_t column_index = 0; column_index < vertex_count; column_index++) {
if (row_index == column_index || adjacency_matrix[row_index][column_index] == 1) {
path_matrix[row_index][column_index] = 1;
}
}
}
for(uint64_t k = 2; k <= vertex_count; k++) {
power_matrix = gemm_basic(adjacency_matrix, power_matrix);
for (uint64_t row_index = 0; row_index < vertex_count; row_index++) {
for (uint64_t column_index = 0; column_index < vertex_count; column_index++) {
if (power_matrix[row_index][column_index] != 0) {
path_matrix[row_index][column_index] = 1;
}
}
}
}
return path_matrix;
}
std::vector<std::vector<uint64_t>> find_components_basic(const std::vector<std::vector<uint64_t>>& path_matrix) {
uint64_t vertex_count = path_matrix.size();
std::vector<std::vector<uint64_t>> components;
std::vector<uint64_t> component;
components.reserve(0);
component.reserve(vertex_count);
for (uint64_t row_index = 0; row_index < vertex_count; row_index++) {
component.clear();
for (uint64_t column_index = 0; column_index < vertex_count; column_index++) {
if (path_matrix[row_index][column_index] == 1) {
component.push_back(column_index + 1);
}
}
component.shrink_to_fit();
std::sort(component.begin(), component.end());
auto iterator = find(components.begin(), components.end(), component);
if (iterator == components.end()) {
components.push_back(component);
}
}
components.shrink_to_fit();
return components;
}
void dfs(const std::vector<std::vector<uint64_t>>& adjacency_matrix, const uint64_t vertex, std::vector<bool>& visited) {
visited[vertex] = true;
for (uint64_t neighbor_vertex = 0; neighbor_vertex < adjacency_matrix.size(); neighbor_vertex++) {
if (adjacency_matrix[vertex][neighbor_vertex] != 1) {
continue;
}
if (visited[neighbor_vertex]) {
continue;
}
dfs(adjacency_matrix, neighbor_vertex, visited);
}
}
std::vector<std::vector<uint64_t>> find_components_dfs(const std::vector<std::vector<uint64_t>>& adjacency_matrix) {
uint64_t vertex_count = adjacency_matrix.size();
std::vector<std::vector<uint64_t>> components;
std::vector<uint64_t> component;
std::vector<bool> visited(vertex_count, false);
components.reserve(0);
component.reserve(vertex_count);
for (uint64_t vertex = 0; vertex < vertex_count; vertex++) {
component.clear();
dfs(adjacency_matrix, vertex, visited);
for (uint64_t index = 0; index < vertex_count; index++) {
if (visited[index]) {
component.push_back(index + 1);
}
}
component.shrink_to_fit();
std::sort(component.begin(), component.end());
auto iterator = find(components.begin(), components.end(), component);
if (iterator == components.end()) {
components.push_back(component);
}
}
components.shrink_to_fit();
return components;
}
std::vector<std::vector<uint64_t>> find_bridges_basic(const std::vector<std::vector<uint64_t>>& adjacency_matrix) {
uint64_t vertex_count = adjacency_matrix.size();
std::vector<std::vector<uint64_t>> path_matrix(vertex_count, std::vector<uint64_t>(vertex_count, 0));
std::vector<std::vector<uint64_t>> temp_adjacency_matrix(vertex_count, std::vector<uint64_t>(vertex_count, 0));
std::vector<std::vector<uint64_t>> components = find_components_basic(path_matrix);
std::vector<std::vector<uint64_t>> temp_components;
std::vector<std::vector<uint64_t>> bridges;
std::vector<uint64_t> bridge(2, 0);
for (uint64_t row_index = 0; row_index < vertex_count; row_index++) {
for (uint64_t column_index = 0; column_index < vertex_count; column_index++) {
if (row_index == column_index) {
continue;
}
std::copy(adjacency_matrix.begin(), adjacency_matrix.end(), temp_adjacency_matrix.begin());
temp_adjacency_matrix[row_index][column_index] = 0;
temp_adjacency_matrix[column_index][row_index] = 0;
path_matrix = calculate_path_matrix(temp_adjacency_matrix);
temp_components = find_components_basic(path_matrix);
if (temp_components.size() <= components.size()) {
continue;
}
if (column_index < row_index) {
bridge[0] = column_index + 1;
bridge[1] = row_index + 1;
} else {
bridge[0] = row_index + 1;
bridge[1] = column_index + 1;
}
auto iterator = find(bridges.begin(), bridges.end(), bridge);
if (iterator == bridges.end()) {
bridges.push_back(bridge);
}
}
}
bridges.shrink_to_fit();
return bridges;
}
std::vector<std::vector<uint64_t>> find_bridges_dfs_v1(const std::vector<std::vector<uint64_t>>& adjacency_matrix) {
uint64_t vertex_count = adjacency_matrix.size();
std::vector<std::vector<uint64_t>> temp_adjacency_matrix(vertex_count, std::vector<uint64_t>(vertex_count, 0));
std::vector<std::vector<uint64_t>> components = find_components_dfs(adjacency_matrix);
std::vector<std::vector<uint64_t>> temp_components;
std::vector<std::vector<uint64_t>> bridges;
std::vector<uint64_t> bridge(2, 0);
for (uint64_t row_index = 0; row_index < vertex_count; row_index++) {
for (uint64_t column_index = 0; column_index < vertex_count; column_index++) {
if (row_index == column_index) {
continue;
}
std::copy(adjacency_matrix.begin(), adjacency_matrix.end(), temp_adjacency_matrix.begin());
temp_adjacency_matrix[row_index][column_index] = 0;
temp_adjacency_matrix[column_index][row_index] = 0;
temp_components = find_components_dfs(temp_adjacency_matrix);
if (temp_components.size() <= components.size()) {
continue;
}
if (column_index < row_index) {
bridge[0] = column_index + 1;
bridge[1] = row_index + 1;
} else {
bridge[0] = row_index + 1;
bridge[1] = column_index + 1;
}
auto iterator = find(bridges.begin(), bridges.end(), bridge);
if (iterator == bridges.end()) {
bridges.push_back(bridge);
}
}
}
bridges.shrink_to_fit();
return bridges;
}
void dfs_bridges(const std::vector<std::vector<uint64_t>>& adjacency_matrix, const uint64_t vertex, const uint64_t parent_vertex, std::vector<bool>& visited,
uint64_t current_time, std::vector<uint64_t>& discovery_time, std::vector<uint64_t>& lowest_time, std::vector<std::vector<uint64_t>>& bridges) {
current_time++;
visited[vertex] = true;
discovery_time[vertex] = current_time;
lowest_time[vertex] = current_time;
std::vector<uint64_t> bridge(2, 0);
for (uint64_t neighbor_vertex = 0; neighbor_vertex < adjacency_matrix.size(); neighbor_vertex++) {
if (adjacency_matrix[vertex][neighbor_vertex] != 1) {
continue;
}
if (parent_vertex != neighbor_vertex && visited[neighbor_vertex]) {
if (lowest_time[vertex] > discovery_time[neighbor_vertex]) {
lowest_time[vertex] = discovery_time[neighbor_vertex];
}
continue;
}
if (visited[neighbor_vertex]) {
continue;
}
dfs_bridges(adjacency_matrix, neighbor_vertex, vertex, visited, current_time, discovery_time, lowest_time, bridges);
if (lowest_time[vertex] > lowest_time[neighbor_vertex]) {
lowest_time[vertex] = lowest_time[neighbor_vertex];
}
if (discovery_time[vertex] >= lowest_time[neighbor_vertex]) {
continue;
}
bridge[0] = vertex + 1;
bridge[1] = neighbor_vertex + 1;
auto iterator = find(bridges.begin(), bridges.end(), bridge);
if (iterator == bridges.end()) {
bridges.push_back(bridge);
}
}
}
std::vector<std::vector<uint64_t>> find_bridges_dfs_v2(const std::vector<std::vector<uint64_t>>& adjacency_matrix) {
uint64_t vertex_count = adjacency_matrix.size();
std::vector<bool> visited(vertex_count, false);
uint64_t current_time = 0;
std::vector<uint64_t> discovery_time(vertex_count, 0);
std::vector<uint64_t> lowest_time(vertex_count, 0);
std::vector<std::vector<uint64_t>> bridges;
for (uint64_t vertex = 0; vertex < vertex_count; vertex++) {
if (!visited[vertex]) {
dfs_bridges(adjacency_matrix, vertex, UINT64_MAX, visited, current_time, discovery_time, lowest_time, bridges);
}
}
bridges.shrink_to_fit();
return bridges;
}
std::vector<uint64_t> find_articulations_basic(const std::vector<std::vector<uint64_t>>& adjacency_matrix) {
uint64_t vertex_count = adjacency_matrix.size();
std::vector<std::vector<uint64_t>> path_matrix(vertex_count, std::vector<uint64_t>(vertex_count, 0));
std::vector<std::vector<uint64_t>> temp_adjacency_matrix(vertex_count, std::vector<uint64_t>(vertex_count, 0));
std::vector<std::vector<uint64_t>> components = find_components_basic(path_matrix);
std::vector<std::vector<uint64_t>> temp_components;
std::vector<uint64_t> articulations;
for (uint64_t i = 0; i < vertex_count; i++) {
std::copy(adjacency_matrix.begin(), adjacency_matrix.end(), temp_adjacency_matrix.begin());
for (uint64_t row_index = 0; row_index < vertex_count; row_index++) {
for (uint64_t column_index = 0; column_index < vertex_count; column_index++) {
temp_adjacency_matrix[row_index][i] = 0;
temp_adjacency_matrix[i][column_index] = 0;
}
}
path_matrix = calculate_path_matrix(temp_adjacency_matrix);
temp_components = find_components_basic(path_matrix);
// the + 1 is needed because I am not removing the vertex, I am just removing all of its edges
// removing all of its edges, means it itself becomes a component, which needs to be accounted for
if (temp_components.size() > components.size() + 1) {
articulations.push_back(i + 1);
}
}
articulations.shrink_to_fit();
std::sort(articulations.begin(), articulations.end());
return articulations;
}
std::vector<uint64_t> find_articulations_dfs_v1(const std::vector<std::vector<uint64_t>>& adjacency_matrix) {
uint64_t vertex_count = adjacency_matrix.size();
std::vector<std::vector<uint64_t>> path_matrix(vertex_count, std::vector<uint64_t>(vertex_count, 0));
std::vector<std::vector<uint64_t>> temp_adjacency_matrix(vertex_count, std::vector<uint64_t>(vertex_count, 0));
std::vector<std::vector<uint64_t>> components = find_components_dfs(adjacency_matrix);
std::vector<std::vector<uint64_t>> temp_components;
std::vector<uint64_t> articulations;
for (uint64_t i = 0; i < vertex_count; i++) {
std::copy(adjacency_matrix.begin(), adjacency_matrix.end(), temp_adjacency_matrix.begin());
for (uint64_t row_index = 0; row_index < vertex_count; row_index++) {
for (uint64_t column_index = 0; column_index < vertex_count; column_index++) {
temp_adjacency_matrix[row_index][i] = 0;
temp_adjacency_matrix[i][column_index] = 0;
}
}
temp_components = find_components_dfs(temp_adjacency_matrix);
// the + 1 is needed because I am not removing the vertex, I am just removing all of its edges
// removing all of its edges, means it itself becomes a component, which needs to be accounted for
if (temp_components.size() > components.size() + 1) {
articulations.push_back(i + 1);
}
}
articulations.shrink_to_fit();
std::sort(articulations.begin(), articulations.end());
return articulations;
}
void dfs_articulations(const std::vector<std::vector<uint64_t>>& adjacency_matrix, const uint64_t vertex, const uint64_t parent_vertex, std::vector<bool>& visited,
uint64_t current_time, std::vector<uint64_t>& discovery_time, std::vector<uint64_t>& lowest_time, std::vector<uint64_t>& articulations) {
current_time++;
visited[vertex] = true;
discovery_time[vertex] = current_time;
lowest_time[vertex] = current_time;
uint64_t child_count = 0;
bool is_articulation = false;
for (uint64_t neighbor_vertex = 0; neighbor_vertex < adjacency_matrix.size(); neighbor_vertex++) {
if (adjacency_matrix[vertex][neighbor_vertex] != 1) {
continue;
}
if (visited[neighbor_vertex]) {
if (lowest_time[vertex] > discovery_time[neighbor_vertex]) {
lowest_time[vertex] = discovery_time[neighbor_vertex];
}
continue;
}
child_count++;
dfs_articulations(adjacency_matrix, neighbor_vertex, vertex, visited, current_time, discovery_time, lowest_time, articulations);
if (lowest_time[vertex] > lowest_time[neighbor_vertex]) {
lowest_time[vertex] = lowest_time[neighbor_vertex];
}
if (parent_vertex != UINT64_MAX && discovery_time[vertex] <= lowest_time[neighbor_vertex]) {
is_articulation = true;
}
}
if (parent_vertex == UINT64_MAX && child_count > 1) {
is_articulation = true;
}
if (is_articulation) {
articulations.push_back(vertex + 1);
}
}
std::vector<uint64_t> find_articulations_dfs_v2(const std::vector<std::vector<uint64_t>>& adjacency_matrix) {
uint64_t vertex_count = adjacency_matrix.size();
std::vector<bool> visited(vertex_count, false);
uint64_t current_time = 0;
std::vector<uint64_t> discovery_time(vertex_count, 0);
std::vector<uint64_t> lowest_time(vertex_count, 0);
std::vector<uint64_t> articulations;
for (uint64_t vertex = 0; vertex < vertex_count; vertex++) {
if (!visited[vertex]) {
dfs_articulations(adjacency_matrix, vertex, UINT64_MAX, visited, current_time, discovery_time, lowest_time, articulations);
}
}
articulations.shrink_to_fit();
std::sort(articulations.begin(), articulations.end());
return articulations;
}

71
graph.h
View File

@ -1,71 +0,0 @@
#ifndef GRAPH_H
#define GRAPH_H
#include <stdint.h>
void random_adjacency(const uint64_t vertex_count,
uint64_t matrix[vertex_count][vertex_count]);
void calculate_distance_matrix(const uint64_t vertex_count,
const uint64_t adjacency_matrix[vertex_count][vertex_count],
uint64_t distance_matrix[vertex_count][vertex_count]);
// returns 1 if it is a disconnected graph and sets all values in eccentricities to UINT64_MAX
int get_eccentricities(const uint64_t vertex_count,
const uint64_t distance_matrix[vertex_count][vertex_count],
uint64_t eccentricities[vertex_count]);
uint64_t get_radius(const uint64_t vertex_count,
const uint64_t eccentricities[vertex_count]);
uint64_t get_diameter(const uint64_t vertex_count,
const uint64_t eccentricities[vertex_count]);
void get_centre(const uint64_t vertex_count,
const uint64_t eccentricities[vertex_count],
const uint64_t radius,
uint64_t centre[vertex_count]);
void calculate_path_matrix(const uint64_t vertex_count,
const uint64_t adjacency_matrix[vertex_count][vertex_count],
uint64_t path_matrix[vertex_count][vertex_count]);
void find_components_basic(const uint64_t vertex_count,
const uint64_t path_matrix[vertex_count][vertex_count],
uint64_t components[vertex_count][vertex_count]);
void find_components_dfs(const uint64_t vertex_count,
const uint64_t adjacency_matrix[vertex_count][vertex_count],
uint64_t components[vertex_count][vertex_count]);
void find_bridges_basic(const uint64_t vertex_count,
const uint64_t adjacency_matrix[vertex_count][vertex_count],
const uint64_t components[vertex_count][vertex_count],
uint64_t bridges[vertex_count][2]);
void find_bridges_dfs_v1(const uint64_t vertex_count,
const uint64_t adjacency_matrix[vertex_count][vertex_count],
const uint64_t components[vertex_count][vertex_count],
uint64_t bridges[vertex_count][2]);
void find_bridges_dfs_v2(const uint64_t vertex_count,
const uint64_t adjacency_matrix[vertex_count][vertex_count],
const uint64_t components[vertex_count][vertex_count],
uint64_t bridges[vertex_count][2]);
void find_articulations_basic(const uint64_t vertex_count,
const uint64_t adjacency_matrix[vertex_count][vertex_count],
const uint64_t components[vertex_count][vertex_count],
uint64_t articulations[vertex_count]);
void find_articulations_dfs_v1(const uint64_t vertex_count,
const uint64_t adjacency_matrix[vertex_count][vertex_count],
const uint64_t components[vertex_count][vertex_count],
uint64_t articulations[vertex_count]);
void find_articulations_dfs_v2(const uint64_t vertex_count,
const uint64_t adjacency_matrix[vertex_count][vertex_count],
const uint64_t components[vertex_count][vertex_count],
uint64_t articulations[vertex_count]);
#endif

33
graph.hpp Normal file
View File

@ -0,0 +1,33 @@
#pragma once
#include <cstdint>
#include <vector>
std::vector<std::vector<uint64_t>> random_adjacency(const uint64_t vertex_count);
std::vector<std::vector<uint64_t>> calculate_distance_matrix(const std::vector<std::vector<uint64_t>>& adjacency_matrix);
std::vector<uint64_t> get_eccentricities(const std::vector<std::vector<uint64_t>>& distance_matrix);
uint64_t get_radius(const std::vector<uint64_t>& eccentricities);
uint64_t get_diameter(const std::vector<uint64_t>& eccentricities);
std::vector<uint64_t> get_centre(const std::vector<uint64_t>& eccentricities);
std::vector<std::vector<uint64_t>> calculate_path_matrix(const std::vector<std::vector<uint64_t>>& adjacency_matrix);
std::vector<std::vector<uint64_t>> find_components_basic(const std::vector<std::vector<uint64_t>>& path_matrix);
std::vector<std::vector<uint64_t>> find_components_dfs(const std::vector<std::vector<uint64_t>>& adjacency_matrix);
std::vector<std::vector<uint64_t>> find_bridges_basic(const std::vector<std::vector<uint64_t>>& adjacency_matrix);
std::vector<std::vector<uint64_t>> find_bridges_dfs_v1(const std::vector<std::vector<uint64_t>>& adjacency_matrix);
std::vector<std::vector<uint64_t>> find_bridges_dfs_v2(const std::vector<std::vector<uint64_t>>& adjacency_matrix);
std::vector<uint64_t> find_articulations_basic(const std::vector<std::vector<uint64_t>>& adjacency_matrix);
std::vector<uint64_t> find_articulations_dfs_v1(const std::vector<std::vector<uint64_t>>& adjacency_matrix);
std::vector<uint64_t> find_articulations_dfs_v2(const std::vector<std::vector<uint64_t>>& adjacency_matrix);

280
main.c
View File

@ -1,280 +0,0 @@
#include "graph.h"
#include "matrix.h"
#include <limits.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
void benchmark_gemm() {
const uint64_t vertex_count1 = 1024;
uint64_t (*matrix1)[vertex_count1] = malloc(vertex_count1 * vertex_count1 * sizeof(uint64_t));
const uint64_t vertex_count2 = 1024;
uint64_t (*matrix2)[vertex_count2] = malloc(vertex_count2 * vertex_count2 * sizeof(uint64_t));
uint64_t (*new_matrix)[vertex_count2] = malloc(vertex_count1 * vertex_count2 * sizeof(uint64_t));
double elapsed_time = 0.0;
const uint64_t iterations = 10;
clock_t start_time;
for (uint64_t i = 0; i < iterations; i++) {
random_adjacency(vertex_count1, matrix1);
random_adjacency(vertex_count2, matrix2);
start_time = clock();
gemm_basic(vertex_count1, vertex_count1, matrix1,
vertex_count2, vertex_count2, matrix2,
new_matrix);
elapsed_time += (double)(clock() - start_time) / CLOCKS_PER_SEC;
}
printf("%lu iterations of gemm_basic took roughly %f seconds\n", iterations, elapsed_time);
printf("An iteration of gemm_basic took on average roughly %f seconds\n", elapsed_time/iterations);
free(matrix1);
free(matrix2);
free(new_matrix);
}
void benchmark_find_components() {
const uint64_t vertex_count = 100;
uint64_t adjacency_matrix[vertex_count][vertex_count];
uint64_t components[vertex_count][vertex_count];
uint64_t path_matrix[vertex_count][vertex_count];
double elapsed_time = 0.0;
const uint64_t iterations = 100;
clock_t start_time;
for (uint64_t i = 0; i < iterations; i++) {
random_adjacency(vertex_count, adjacency_matrix);
start_time = clock();
calculate_path_matrix(vertex_count, adjacency_matrix, path_matrix);
find_components_basic(vertex_count, path_matrix, components);
elapsed_time += (double)(clock() - start_time) / CLOCKS_PER_SEC;
}
printf("%lu iterations of find_components_basic took roughly %f seconds\n", iterations, elapsed_time);
printf("An iteration of find_components_basic took on average roughly %f seconds\n", elapsed_time/iterations);
elapsed_time = 0.0;
for (uint64_t i = 0; i < iterations; i++) {
random_adjacency(vertex_count, adjacency_matrix);
start_time = clock();
find_components_dfs(vertex_count, adjacency_matrix, components);
elapsed_time += (double)(clock() - start_time) / CLOCKS_PER_SEC;
}
printf("%lu iterations of find_components_dfs took roughly %f seconds\n", iterations, elapsed_time);
printf("An iteration of find_components_dfs took on average roughly %f seconds\n", elapsed_time/iterations);
}
void test_with_basic() {
const uint64_t vertex_count = 24;
uint64_t adjacency_matrix[vertex_count][vertex_count];
uint64_t distance_matrix[vertex_count][vertex_count];
uint64_t path_matrix[vertex_count][vertex_count];
uint64_t eccentricities[vertex_count];
uint64_t radius, diameter, centre[vertex_count];
uint64_t components[vertex_count][vertex_count];
uint64_t bridges[vertex_count][2];
uint64_t articulations[vertex_count];
if (read_csv("csv/24n.csv", vertex_count, vertex_count, adjacency_matrix) == 1) {
return;
}
calculate_distance_matrix(vertex_count, adjacency_matrix, distance_matrix);
get_eccentricities(vertex_count, distance_matrix, eccentricities);
radius = get_radius(vertex_count, eccentricities);
diameter = get_diameter(vertex_count, eccentricities);
get_centre(vertex_count, eccentricities, radius, centre);
calculate_path_matrix(vertex_count, adjacency_matrix, path_matrix);
find_components_basic(vertex_count, path_matrix, components);
find_bridges_basic(vertex_count, adjacency_matrix, components, bridges);
find_articulations_basic(vertex_count, adjacency_matrix, components, articulations);
puts("adjacency_matrix:");
print_matrix(vertex_count, vertex_count, adjacency_matrix);
puts("\ndistance_matrix:");
print_matrix(vertex_count, vertex_count, distance_matrix);
puts("\neccentricities:");
for (uint64_t index = 0; index < vertex_count; index++) {
printf("\tVertex %lu: %lu\n", index + 1, eccentricities[index]);
}
printf("\nradius: %lu", radius);
printf("\ndiameter: %lu", diameter);
puts("\ncentre:");
for (uint64_t index = 0; index < vertex_count; index++) {
if (centre[index] == 1) {
printf("\tVertex %lu\n", index + 1);
}
}
puts("\npath_matrix:");
print_matrix(vertex_count, vertex_count, path_matrix);
puts("\ncomponents:");
for (uint64_t row_index = 0; row_index < vertex_count; row_index++) {
int empty = 1;
for (uint64_t column_index = 0; column_index < vertex_count; column_index++) {
if (components[row_index][column_index] != 0) {
empty = 0;
}
}
if (empty) {
continue;
}
printf("\tComponent %lu: {", row_index + 1);
for (uint64_t column_index = 0; column_index < vertex_count; column_index++) {
if (components[row_index][column_index] != 0) {
printf("%lu, ", components[row_index][column_index]);
}
}
puts("}");
}
puts("\nbridges:");
for (uint64_t index = 0; index < vertex_count; index++) {
if (bridges[index][0] != 0) {
printf("\tBridge %lu: {%lu, %lu}\n", index + 1, bridges[index][0], bridges[index][1]);
}
}
puts("\narticulations:");
for (uint64_t index = 0; index < vertex_count; index++) {
if (articulations[index] != 0) {
printf("\tVertex %lu\n", articulations[index]);
}
}
}
void test_with_dfs() {
const uint64_t vertex_count = 24;
uint64_t adjacency_matrix[vertex_count][vertex_count];
uint64_t distance_matrix[vertex_count][vertex_count];
uint64_t eccentricities[vertex_count];
uint64_t radius, diameter;
uint64_t centre[vertex_count];
uint64_t components[vertex_count][vertex_count];
uint64_t bridges[vertex_count][2];
uint64_t articulations[vertex_count];
if (read_csv("csv/24n.csv", vertex_count, vertex_count, adjacency_matrix) == 1) {
return;
}
/*
const uint64_t vertex_count = 1500;
uint64_t (*adjacency_matrix)[vertex_count] = malloc(vertex_count * vertex_count * sizeof(uint64_t));
uint64_t (*distance_matrix)[vertex_count] = malloc(vertex_count * vertex_count * sizeof(uint64_t));
uint64_t *eccentricities = malloc(vertex_count * sizeof(uint64_t));
uint64_t radius, diameter;
uint64_t *centre = malloc(vertex_count * sizeof(uint64_t));
uint64_t (*components)[vertex_count] = malloc(vertex_count * vertex_count * sizeof(uint64_t));
uint64_t (*bridges)[vertex_count] = malloc(vertex_count * 2 * sizeof(uint64_t));
uint64_t *articulations = malloc(vertex_count * sizeof(uint64_t));
random_adjacency(vertex_count, adjacency_matrix);
*/
calculate_distance_matrix(vertex_count, adjacency_matrix, distance_matrix);
get_eccentricities(vertex_count, distance_matrix, eccentricities);
radius = get_radius(vertex_count, eccentricities);
diameter = get_diameter(vertex_count, eccentricities);
get_centre(vertex_count, eccentricities, radius, centre);
find_components_dfs(vertex_count, adjacency_matrix, components);
find_bridges_dfs_v2(vertex_count, adjacency_matrix, components, bridges);
find_articulations_dfs_v2(vertex_count, adjacency_matrix, components, articulations);
puts("\nadjacency_matrix:");
print_matrix(vertex_count, vertex_count, adjacency_matrix);
puts("\ndistance_matrix:");
print_matrix(vertex_count, vertex_count, distance_matrix);
puts("\neccentricities:");
for (uint64_t index = 0; index < vertex_count; index++) {
printf("\tVertex %lu: %lu\n", index + 1, eccentricities[index]);
}
printf("\nradius: %lu", radius);
printf("\ndiameter: %lu", diameter);
puts("\ncentre:");
for (uint64_t index = 0; index < vertex_count; index++) {
if (centre[index] == 1) {
printf("\tVertex %lu\n", index + 1);
}
}
puts("\ncomponents:");
for (uint64_t row_index = 0; row_index < vertex_count; row_index++) {
int empty = 1;
for (uint64_t column_index = 0; column_index < vertex_count; column_index++) {
if (components[row_index][column_index] != 0) {
empty = 0;
}
}
if (empty) {
continue;
}
printf("\tComponent %lu: {", row_index + 1);
for (uint64_t column_index = 0; column_index < vertex_count; column_index++) {
if (components[row_index][column_index] != 0) {
printf("%lu, ", column_index + 1);
}
}
puts("}");
}
uint64_t bridge_number = 1;
puts("\nbridges:");
for (uint64_t index = 0; index < vertex_count; index++) {
if (bridges[index][0] != 0) {
printf("\tBridge %lu: {%lu, %lu}\n", bridge_number, bridges[index][0], bridges[index][1]);
bridge_number++;
}
}
puts("\narticulations:");
for (uint64_t index = 0; index < vertex_count; index++) {
if (articulations[index] != 0) {
printf("\tVertex %lu\n", articulations[index]);
}
}
// free(adjacency_matrix);
// free(distance_matrix);
// free(eccentricities);
// free(centre);
// free(components);
// free(bridges);
// free(articulations);
}
int main(void) {
// test_with_basic();
test_with_dfs();
// benchmark_gemm();
// benchmark_find_components();
}

247
main.cpp Normal file
View File

@ -0,0 +1,247 @@
#include "graph.hpp"
#include "matrix.hpp"
#include <cstdint>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <vector>
#include <iostream>
void benchmark_gemm() {
const uint64_t vertex_count1 = 1024;
std::vector<std::vector<uint64_t>> matrix1;
const uint64_t vertex_count2 = 1024;
std::vector<std::vector<uint64_t>> matrix2;
std::vector<std::vector<uint64_t>> new_matrix;
const uint64_t iterations = 10;
double elapsed_time = 0.0;
// clock_t start_time;
for (uint64_t i = 0; i < iterations; i++) {
matrix1 = random_adjacency(vertex_count1);
matrix2 = random_adjacency(vertex_count2);
// start_time = clock();
new_matrix = gemm_basic(matrix1, matrix2);
// elapsed_time += (double)(clock() - start_time) / CLOCKS_PER_SEC;
}
printf("%lu iterations of gemm_basic took roughly %f seconds\n", iterations, elapsed_time);
printf("An iteration of gemm_basic took on average roughly %f seconds\n", elapsed_time/iterations);
}
void benchmark_find_components() {
const uint64_t vertex_count = 100;
std::vector<std::vector<uint64_t>> adjacency_matrix;
std::vector<std::vector<uint64_t>> components;
std::vector<std::vector<uint64_t>> path_matrix;
const uint64_t iterations = 100;
double elapsed_time = 0.0;
// clock_t start_time;
for (uint64_t i = 0; i < iterations; i++) {
adjacency_matrix = random_adjacency(vertex_count);
// start_time = clock();
path_matrix = calculate_path_matrix(adjacency_matrix);
components = find_components_basic(path_matrix);
// elapsed_time += (double)(clock() - start_time) / CLOCKS_PER_SEC;
}
printf("%lu iterations of find_components_basic took roughly %f seconds\n", iterations, elapsed_time);
printf("An iteration of find_components_basic took on average roughly %f seconds\n", elapsed_time/iterations);
elapsed_time = 0.0;
for (uint64_t i = 0; i < iterations; i++) {
adjacency_matrix = random_adjacency(vertex_count);
// start_time = clock();
components = find_components_dfs(adjacency_matrix);
// elapsed_time += (double)(clock() - start_time) / CLOCKS_PER_SEC;
}
printf("%lu iterations of find_components_dfs took roughly %f seconds\n", iterations, elapsed_time);
printf("An iteration of find_components_dfs took on average roughly %f seconds\n", elapsed_time/iterations);
}
void test_with_basic() {
std::vector<std::vector<uint64_t>> adjacency_matrix = read_csv("csv/24n.csv");
std::vector<std::vector<uint64_t>> distance_matrix = calculate_distance_matrix(adjacency_matrix);
std::vector<std::vector<uint64_t>> path_matrix = calculate_path_matrix(adjacency_matrix);
std::vector<uint64_t> eccentricities = get_eccentricities(distance_matrix);
uint64_t radius = get_radius(eccentricities);
uint64_t diameter = get_diameter(eccentricities);
std::vector<uint64_t> centre = get_centre(eccentricities);
std::vector<std::vector<uint64_t>> components = find_components_basic(path_matrix);
std::vector<std::vector<uint64_t>> bridges = find_bridges_basic(adjacency_matrix);
std::vector<uint64_t> articulations = find_articulations_basic(adjacency_matrix);
std::cout << "\nadjacency_matrix:\n";
print_matrix(adjacency_matrix);
std::cout << "\ndistance_matrix:\n";
print_matrix(distance_matrix);
std::cout << "\neccentricities: {";
for (uint64_t index = 0; index < eccentricities.size(); index++) {
std::cout << eccentricities[index];
if (index < eccentricities.size() - 1) {
std::cout << ", ";
}
}
std::cout << "}";
std::cout << "\nradius: " << radius;
std::cout << "\ndiameter: " << diameter;
std::cout << "\ncentre: {";
for (uint64_t index = 0; index < centre.size(); index++) {
std::cout << centre[index];
if (index < centre.size() - 1) {
std::cout << ", ";
}
}
std::cout << "}";
std::cout << "\ncomponents:";
for (uint64_t component_index = 0; component_index < components.size(); component_index++) {
std::cout << "\ncomponent " << component_index + 1 << ": {";
for (uint64_t index = 0; index < components[component_index].size(); index++) {
std::cout << components[component_index][index];
if (index < components[component_index].size() - 1) {
std::cout << ", ";
}
}
std::cout << "}";
}
std::cout << "\nbridges:";
for (uint64_t bridge_index = 0; bridge_index < bridges.size(); bridge_index++) {
std::cout << "\nbridge " << bridge_index + 1 << ": {";
for (uint64_t index = 0; index < bridges[bridge_index].size(); index++) {
std::cout << bridges[bridge_index][index];
if (index < bridges[bridge_index].size() - 1) {
std::cout << ", ";
}
}
std::cout << "}";
}
std::cout << "\narticulations: {";
for (uint64_t index = 0; index < articulations.size(); index++) {
std::cout << articulations[index];
if (index < articulations.size() - 1) {
std::cout << ", ";
}
}
std::cout << "}\n";
}
void test_with_dfs() {
// const uint64_t vertex_count = 100;
// std::vector<std::vector<uint64_t>> adjacency_matrix = random_adjacency(vertex_count);
std::vector<std::vector<uint64_t>> adjacency_matrix = read_csv("csv/24n.csv");
std::vector<std::vector<uint64_t>> distance_matrix = calculate_distance_matrix(adjacency_matrix);
std::vector<std::vector<uint64_t>> path_matrix = calculate_path_matrix(adjacency_matrix);
std::vector<uint64_t> eccentricities = get_eccentricities(distance_matrix);
uint64_t radius = get_radius(eccentricities);
uint64_t diameter = get_diameter(eccentricities);
std::vector<uint64_t> centre = get_centre(eccentricities);
std::vector<std::vector<uint64_t>> components = find_components_dfs(adjacency_matrix);
std::vector<std::vector<uint64_t>> bridges = find_bridges_dfs_v2(adjacency_matrix);
std::vector<uint64_t> articulations = find_articulations_dfs_v2(adjacency_matrix);
std::cout << "\nadjacency_matrix:\n";
print_matrix(adjacency_matrix);
std::cout << "\ndistance_matrix:\n";
print_matrix(distance_matrix);
std::cout << "\neccentricities: {";
for (uint64_t index = 0; index < eccentricities.size(); index++) {
std::cout << eccentricities[index];
if (index < eccentricities.size() - 1) {
std::cout << ", ";
}
}
std::cout << "}";
std::cout << "\nradius: " << radius;
std::cout << "\ndiameter: " << diameter;
std::cout << "\ncentre: {";
for (uint64_t index = 0; index < centre.size(); index++) {
std::cout << centre[index];
if (index < centre.size() - 1) {
std::cout << ", ";
}
}
std::cout << "}";
std::cout << "\ncomponents: ";
for (uint64_t component_index = 0; component_index < components.size(); component_index++) {
std::cout << "\n\tcomponent " << component_index + 1 << ": {";
for (uint64_t index = 0; index < components[component_index].size(); index++) {
std::cout << components[component_index][index];
if (index < components[component_index].size() - 1) {
std::cout << ", ";
}
}
std::cout << "}";
}
std::cout << "\nbridges:";
for (uint64_t bridge_index = 0; bridge_index < bridges.size(); bridge_index++) {
std::cout << "\n\tbridge " << bridge_index + 1 << ": {";
for (uint64_t index = 0; index < bridges[bridge_index].size(); index++) {
std::cout << bridges[bridge_index][index];
if (index < bridges[bridge_index].size() - 1) {
std::cout << ", ";
}
}
std::cout << "}";
}
std::cout << "\narticulations: {";
for (uint64_t index = 0; index < articulations.size(); index++) {
std::cout << articulations[index];
if (index < articulations.size() - 1) {
std::cout << ", ";
}
}
std::cout << "}\n";
}
int main(void) {
// test_with_basic();
test_with_dfs();
// benchmark_gemm();
// benchmark_find_components();
}

View File

@ -1,71 +0,0 @@
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
void print_matrix(const uint64_t row_length, const uint64_t column_length, const uint64_t matrix[row_length][column_length]) {
for (uint64_t column_index=0; column_index < column_length; column_index++) {
for (uint64_t row_index=0; row_index < row_length; row_index++) {
printf("%lu ", matrix[row_index][column_index]);
}
puts("");
}
}
void gemm_basic(const uint64_t row_length1, const uint64_t column_length1, const uint64_t matrix1[row_length1][column_length1],
const uint64_t row_length2, const uint64_t column_length2, const uint64_t matrix2[row_length2][column_length2],
uint64_t output_matrix[row_length1][column_length2]) {
uint64_t sum;
for (uint64_t i = 0; i < row_length1; i++) {
for (uint64_t j = 0; j < column_length2; j++) {
sum = 0;
for (uint64_t k = 0; k < row_length1; k++) {
sum += matrix1[i][k] * matrix2[k][j];
}
output_matrix[i][j] = sum;
}
}
}
int read_csv(const char *file_name, const uint64_t row_length, const uint64_t column_length, uint64_t output_matrix[row_length][column_length]) {
FILE *file_ptr;
uint64_t bufsize = row_length*2+1; // have to account for delimiters
char buffer[bufsize];
char *value, *file_line;
uint64_t row_index = 0, column_index = 0;
file_ptr = fopen(file_name, "r");
if (file_ptr == NULL) {
puts("Unable to open csv");
return 1;
}
while ((file_line = fgets(buffer, bufsize, file_ptr)) != NULL) {
// This shit is just needed and I dont know why
file_line[strcspn(file_line, "\n")] = 0;
value = strtok(file_line, ";,");
// for some reason there are two NULLs at the end of a line
// and I dont wanna increment the column_index
if (value == NULL) {
continue;
}
while (value != NULL) {
output_matrix[row_index++][column_index] = strtoul(value, NULL, 0);
value = strtok(NULL, ";,");
}
row_index = 0;
column_index++;
}
fclose(file_ptr);
return 0;
}

70
matrix.cpp Normal file
View File

@ -0,0 +1,70 @@
#include <cstdint>
#include <stdlib.h>
#include <iostream>
#include <vector>
#include <fstream>
#include <sstream>
void print_matrix(const std::vector<std::vector<uint64_t>>& matrix) {
for (uint64_t column_index = 0; column_index < matrix[0].size(); column_index++) {
for (uint64_t row_index = 0; row_index < matrix.size(); row_index++) {
std::cout << matrix[row_index][column_index] << " ";
}
std::cout << "\n";
}
}
std::vector<std::vector<uint64_t>> gemm_basic(const std::vector<std::vector<uint64_t>>& matrix1,
const std::vector<std::vector<uint64_t>>& matrix2) {
std::vector<std::vector<uint64_t>> output_matrix(matrix1.size(), std::vector<uint64_t>(matrix2[0].size(), 0));
uint64_t sum;
for (uint64_t i = 0; i < matrix1.size(); i++) {
for (uint64_t j = 0; j < matrix2[0].size(); j++) {
sum = 0;
for (uint64_t k = 0; k < matrix1.size(); k++) {
sum += matrix1[i][k] * matrix2[k][j];
}
output_matrix[i][j] = sum;
}
}
return output_matrix;
}
std::vector<std::vector<uint64_t>> read_csv(const std::string file_name) {
std::vector<std::vector<uint64_t>> output_matrix;
std::vector<uint64_t> row;
std::string line;
uint64_t column_index = 0;
std::ifstream input_stream(file_name);
while (std::getline(input_stream, line)) {
uint64_t vertex_count = (line.length()+1)/2;
output_matrix.resize(vertex_count);
for (uint64_t row_index = 0; row_index < vertex_count; row_index++) {
output_matrix[row_index].push_back(0);
}
row.clear();
std::stringstream ss(line);
std::string token;
char delimiter = ';';
while (getline(ss, token, delimiter)) {
row.push_back(strtoul(token.c_str(), NULL, 0));
}
for (uint64_t row_index = 0; row_index < row.size(); row_index++) {
output_matrix[row_index][column_index] = row[row_index];
}
column_index++;
}
return output_matrix;
}

View File

@ -1,28 +0,0 @@
#ifndef MATRIX_H
#define MATRIX_H
#include <stdint.h>
void print_matrix(const uint64_t row_length,
const uint64_t column_length,
const uint64_t matrix[row_length][column_length]);
/*
First two matrices will be multiplied and
restult will be written to output_matrix.
Matrix size requirements are as specified in the parameters.
*/
void gemm_basic(const uint64_t row_length1,
const uint64_t column_length1,
const uint64_t matrix1[row_length1][column_length1],
const uint64_t row_length2,
const uint64_t column_length2,
const uint64_t matrix2[row_length2][column_length2],
uint64_t output_matrix[row_length1][column_length2]);
int read_csv(char *file_name,
uint64_t row_length,
uint64_t column_length,
uint64_t output_matrix[row_length][column_length]);
#endif

15
matrix.hpp Normal file
View File

@ -0,0 +1,15 @@
#pragma once
#include <cstdint>
#include <vector>
#include <string>
void print_matrix(const std::vector<std::vector<uint64_t>>& matrix);
/*
First two matrices will be multiplied and
restult will be written to output_matrix.
*/
std::vector<std::vector<uint64_t>> gemm_basic(const std::vector<std::vector<uint64_t>>& matrix1,
const std::vector<std::vector<uint64_t>>& matrix2);
std::vector<std::vector<uint64_t>> read_csv(const std::string file_name);